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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Endocrine signaling networks control diverse biological processes and life history traits

across metazoans. In both invertebrate and vertebrate taxa, steroid hormones regulate

immune system function in response to intrinsic and environmental stimuli, such as micro-

bial infection. The mechanisms of this endocrine-immune regulation are complex and con-

stitute an ongoing research endeavor facilitated by genetically tractable animal models. The

20-hydroxyecdysone (20E) is the major steroid hormone in arthropods, primarily studied for

its essential role in mediating developmental transitions and metamorphosis; 20E also mod-

ulates innate immunity in a variety of insect taxa. This review provides an overview of our

current understanding of 20E-mediated innate immune responses. The prevalence of corre-

lations between 20E-driven developmental transitions and innate immune activation are

summarized across a range of holometabolous insects. Subsequent discussion focuses on

studies conducted using the extensive genetic resources available in Drosophila that have

begun to reveal the mechanisms underlying 20E regulation of immunity in the contexts of

both development and bacterial infection. Lastly, I propose directions for future research

into 20E regulation of immunity that will advance our knowledge of how interactive endocrine

networks coordinate animals’ physiological responses to environmental microbes.

Introduction

Animals continuously interact with diverse populations of environmental microorganisms

that profoundly impact their biology. Pathogenic microbes, in particular, can elicit rapid and

dramatic changes to overall animal physiology in support of a resource-costly immune

response. Endocrine signaling networks constitute one of the key mechanisms animals have

evolved to rapidly modulate biological functions in response to intrinsic and extrinsic stimuli.

Across metazoans, major physiological and life history traits are subject to endocrine regula-

tion. These include growth, development, metabolism, reproduction, aging, stress responses,

and immunity [1–5]. Notably, these traits are also strongly influenced by interactions with

microbes [6,7]. Systemically circulating hormones can bind to receptors that are expressed in

multiple distant target tissues and may regulate diverse cellular and physiological processes

simultaneously. This concept of “hormonal pleiotropy” [2,8] posits hormones as principal
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factors that control the balance among competing biological processes, thereby enabling ani-

mals to quickly and dynamically coordinate their physiology in response to environmental

conditions, including the microbial environment. Endocrine regulation of an integrated physi-

ological response to environmental microbes therefore has profound implications for infec-

tious disease dynamics and opens a role for microbes to shape the adaptive evolution of animal

physiology [8–11].

The immune system comprises the main biological processes through which animal hosts

negotiate their relationships with beneficial, commensal, and pathogenic microbes. Steroid

hormone regulation of innate and adaptive immune responses is observed across taxa from

invertebrates to mammals. In vertebrates, glucocorticoids, androgens, and progesterone have

been shown to both positively and negatively regulate immune responses, depending on their

titers and physiological conditions [12,13]. These steroids are frequently employed pharma-

ceutically for their anti-inflammatory properties in humans [14,15]. By contrast, estrogens pri-

marily have immune potentiating effects, stimulating T and B cell development, activation,

and cytokine production [16]. Similar endocrine-immunity regulatory relationships also occur

in laboratory model animals, including mice [15], zebrafish [17], and fruit flies [1], underscor-

ing their prevalence and facilitating experimental investigation of the underlying molecular

mechanisms.

Insects comprise 80% of the estimated species biodiversity on earth [18,19], with pivotal

roles as pollinators, agricultural pests, and infectious disease vectors; as such, their impacts on

global human health are vast and far-reaching. Unlike vertebrates, insects possess only 1 major

class of steroid hormone, the ecdysteroids, predominated by the most biologically active hor-

mone 20-hydroxyecdysone (20E) [20]. Similarly to vertebrate steroids, 20E regulates many

physiological and organismal insect traits, including juvenile-to-adult developmental transi-

tions [3,21,22], reproductive maturation [23], energy metabolism [24], behavior [25], stress

responses [26], and longevity [26,27].

20E also regulates multiple aspects of insect immunity [1]. Though long-recognized, histor-

ically this regulation has received considerably less research attention than the developmental

functions of 20E. Despite potentially major implications for health-improving measures like

pest and disease vector control, our understanding of 20E-mediated insect immune responses

lags behind that of mammalian steroid–immunity interactions. Work over the past 20 years,

however, has begun to define the mechanisms through which 20E modulates immunity, the

prevalence of this regulation across organ systems and life stages, and the ultimate physiologi-

cal consequences for the insect host. Here, I review significant recent studies pertaining to 20E

regulation of insect innate immunity, largely within the conceptual framework of anticipatory

and infection-activated defenses against bacterial pathogens. I primarily focus on work con-

ducted using the model insect Drosophila melanogaster (hereafter Drosophila), where genetic

amenability has yielded mechanistically detailed discoveries.

Correlation between 20E signaling and immune system activation in

insects

The best-studied role of 20E is driving major developmental transitions during the insect juve-

nile growth period, including key stages of embryogenesis [28,29], the molts between larval

instars [3,21], and, in holometabolous insects, the onset of puparium formation and metamor-

phosis [20,30,31]. Peaks in 20E production and circulating titers initiate the irreversible cellu-

lar and morphological changes that constitute progression through the insect life stages [20].

In addition to these well-studied developmental effects, specific 20E peaks are also accompa-

nied by activation of immune processes in a variety of insect taxa as detailed below.
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Insects lack the antibody-mediated, acquired immune systems of vertebrates, but possess

widely conserved innate immune mechanisms comprising the 2 distinct but functionally inter-

connected branches of humoral and cellular immunity. Humoral immunity involves the action

of 2 minimally overlapping, microbe-responsive signaling cascades, the Toll and IMD path-

ways [32]. While Toll signaling is mainly activated by gram-positive bacteria and fungi, IMD

responds to meso-diaminopimelic acid (DAP)-type peptidoglycan (PGN) derived from gram-

negative (and some gram-positive) bacteria [33,34]. DAP-type PGN binds to and activates

transmembrane peptidoglycan recognition protein (PGRP) receptors, including the major

IMD-activating receptor PGRP-LC [35]. PGN-bound PGRPs initiate an intracellular signaling

cascade that ultimately leads to activation and nuclear translocation of the NF-κB-like tran-

scription factors Relish (for the IMD pathway) and Dorsal and Dorsal-related immunity factor

(Dif; for the Toll pathway), which transcriptionally up-regulate expression of antimicrobial

peptides (AMPs) [32,34]. Systemic bacterial infection with gram-negative pathogens leads to

rapid, massive expression and secretion of AMPs, in an effort to constrain the infection

through their bactericidal actions [36,37]. In parallel to this humoral response, cellular immu-

nity is mediated by a heterogeneous population of hemocytes that contribute to immune

defenses via phagocytosis of microbial cells, encapsulation of larger foreign bodies like parasite

eggs, and promotion of wound healing [38,39]. Hallmarks of the activation of both cellular

and humoral systems are associated with peaks in 20E abundance at critical stages in

development.

In Drosophila, studies profiling the genome-wide expression changes that occur at 20E-

dependent developmental transitions have consistently documented increased expression of

genes coding for humoral immune pathway components [40–43]. This correlation is promi-

nent during pupariation and the initiation of metamorphosis, the stage at which circulating

20E titers are higher than any other point of the insect lifespan [3,30,44]. Transcript levels of

genes encoding the PGRPs that stimulate each the IMD and Toll pathways, core signal trans-

duction factors in those pathways, and the transcription factors Relish, Dorsal, and Dif are ele-

vated in early pupae relative to the preceding larval stages [41,45]. Most strikingly, however,

both Toll- and IMD-regulated AMP transcripts spike dramatically during pupariation relative

to their levels at preceding and subsequent life stages (Fig 1A) [40,42,45–50].

In addition to the larval-to-pupal transition, a parallel between 20E signaling activity and

humoral immune function has also been identified in Drosophila embryos. During embryo-

genesis, a 20E signaling peak beginning at stage 12 drives germ band retraction [28]. Tan and

colleagues [51] found that stage 11 embryos, in which 20E levels are low, failed to induce Dro-
socin (Dro) and Cecropin A1 (CecA1) expression, constrain bacterial loads, and survive when

injected with Ecc15. By contrast, stage 15 embryos mounted a robust AMP response and sur-

vived infection at higher proportions [51]. Thus, 20E levels correspond to humoral immune

response capacity at multiple stages of Drosophila development.

Similar correlations between developmental 20E pulses and immune induction have been

observed in other insect taxa. Transcripts of PGRPs and AMPs increase in fat body tissues of

wandering versus feeding larvae of the cotton bollworm Helicoverpa armigera [52]. Hemolin,

which encodes a Lepidopteran-specific, infection-stimulated immunoglobulin peptide, is also

transcriptionally elevated in wandering H. armigera and Manduca sexta larvae [52–54].

Immune gene transcript abundance also increases alongside developmental 20E peaks in

nymphs of the hemimetabolous locust Locusta migratoria [55]. Johnston and colleagues [56]

recently documented an up-regulation of a limited number of immune genes at metamorpho-

sis in the gut of the wax moth Galleria mellonella. In addition to humoral immune induction,

major changes to cellular immune processes occur during developmental 20E peaks. At pupar-

ium formation in Drosophila, phagocytic hemocytes increase in number and size, and
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previously sessile, integument-attached cell populations disperse widely throughout the ani-

mal’s body [57–59]. Similar changes in hemocyte properties at pupariation have been reported

for Calliphora vicina larvae [60].

Functional modulation of both humoral and cellular immunity at key 20E-regulated devel-

opmental time points thus appears to be broadly conserved across insects. The prevalence of

immune induction at metamorphosis has informed the hypothesis that 20E-induced AMP

production evolved to prevent infection at a life stage that renders insects particularly vulnera-

ble to microbial pathogens. More specifically, a prophylactic model has been proposed wherein

20E signaling drives both the extreme morphological changes that sensitize the insect to patho-

gens and robust AMP induction that limits bacterial burden and protects against infection

[1,40,56,61–63]. Larvae of holometabolous insects are immersed in and continually feed on

food substrates containing diverse microbial populations [64]. Food-associated microbes are

therefore carried within the larval alimentary tract into the metamorphic process [40,65], dur-

ing which the gut undergoes dramatic remodeling events, including delamination [66–68],

and 16S rRNA gene profiling studies have revealed a marked decrease in bacterial abundance

within the pupal case [40,65], consistent with the microbicidal activity of strong immune acti-

vation. Nunes and colleagues [40] recently showed that AMP up-regulation in early pupal

stage Drosophila also occurs in flies reared under germ-free (microbiologically sterile) condi-

tions, suggesting that 20E-driven immune activation at pupariation may represent an intrinsic

regulatory mechanism independent of microbial stimulus. Importantly, however, other studies

have shown that 20E suppresses developmental induction of immune genes in the silkworm

Bombyx mori [69] and the blowfly C. vicina [70]. Thus, while innate immune activation at

metamorphosis appears widespread across holometabolous insects, this activation may not be

driven by 20E in all species.

Overall, the close temporal correlation between high 20E titers and immune induction at

the wandering and metamorphic insect stages led to the prediction that 20E signaling might

directly and positively regulate innate immune pathways. Below, I discuss studies directly test-

ing these hypotheses through functional experiments, which have revealed evidence indicating

direct regulation of immune function by 20E.

Fig 1. AU : AbbreviationlistshavebeencompiledforthoseusedinFigs1to2:Pleaseverifythatallentriesarecorrect:20E signaling activity during Drosophila development coincides with up-regulation of immune genes. (A) Schematic

illustrating the temporal dynamics of 20E titer and immune gene induction during insect pupariation. Distinct peaks in hemolymph

20E levels drive developmental transitions including the onset of metamorphosis in Drosophila and other holometabolous insects

[20,30,31]. A dramatic, microbe-independent up-regulation of immune gene transcripts, including AMPs, also occurs at pupariation

[40,45]. (B) 20E activates a hierarchical, temporally controlled gene regulatory network. Circulating 20E binds to and activates the

heterodimeric NHR complex consisting of EcR and Usp. 20E-EcR/Usp directly activates transcription of “early” response genes

encoding additional NHRs and transcription factors, including Broad (Br), Eip74EF (E74), and Eip75B (E75). These NHRs up-

regulate expression of “late” response genes, which code for proteins that actuate a variety of cellular and physiological processes

[20,22,81]. 20E chemical structure depiction from PubChem [151]. AMP, antimicrobial peptide; EcR, ecdysone receptor; NHR,

nuclear hormone receptor; Usp, ultraspiracle; 20E, 20-hydroxyecdysone.

https://doi.org/10.1371/journal.pgen.1010782.g001
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20E signaling regulates immune activation during development and

infection

Over 5 decades of research on 20E function in Drosophila has yielded important, generalized

discoveries about how hormones regulate gene expression, cell biology, and organismal physi-

ology [3,20–22]. Like mammalian steroid hormones, 20E modulates genome-wide expression

changes in target tissues by binding to a nuclear hormone receptor (NHR) complex. Cellular

uptake of circulating 20E was recently shown to require a membrane transporter, the Ecdysone

Importer (also known as Oatp74D), originally discovered in Drosophila and subsequently

found to facilitate 20E signaling in other insects [71–74]. Intracellular 20E binds to and acti-

vates a heterodimeric NHR comprising the proteins ecdysone receptor (EcR) and ultraspiracle

(Usp) [3,20–22,75]. The EcR/Usp complex binds to ecdysone response element (EcRE)

sequences in the promoters of target genes, thereby either repressing or activating the tran-

scription of those genes [76–79]. Many 20E-EcR/Usp target genes encode additional NHRs

and transcription factors, including the canonical “early” 20E response targets Eip74EF,

Eip75B, E93, Hr3, and Broad [80–83] and several more genes [77,78,84]. These NHRs in turn

regulate an extensive set of downstream pathways and processes by modulating the expression

of their own target gene regulons. Thus, 20E activates a hierarchical transcriptional program

consisting of primary and secondary responses that are directly and indirectly initiated by

EcR/Usp (Fig 1B) [20,22,81].

In the larval and pupal stages, 20E activation of EcR/Usp regulates a variety of distinct pro-

cesses depending on cell and tissue context, including organ growth, remodeling, and apopto-

sis [3,22,67,68]. Similarly, experiments primarily utilizing genetic approaches in Drosophila
have demonstrated a functional requirement for 20E signaling to fully activate immune

responses. These functional connections have been observed in multiple cell and tissue types

both during development [40,51,58,85] and in response to infection [41,51,58,86–89].

Fat body. The insect fat body is a highly versatile organ that is functionally comparable to

the mammalian liver and adipose tissue, with roles in energy metabolism, xenobiotic detoxifi-

cation, and egg provisioning to support reproduction [90]. The fat body is also the primary

immune-responsive tissue in reaction to systemic pathogen challenge, producing AMPs at

extremely high levels and secreting them into the hemolymph [32,90–93]. 20E signaling in the

fat body appears to be important for immune activation during infection in adult flies. Rus

and colleagues [41] showed that EcR and a suite of 20E early genes, including Br, are each

independently required in the adult fat body for pathogen-induced up-regulation of PGRP-LC,

CecA1, and Dpt. Further, RNAi-mediated depletion of EcR or any of these primary targets in

the fat body led to elevated bacterial burdens and dramatically increased lethality caused by

the typically minimally virulent Drosophila pathogen Pectinobacterium (Erwinia) carotovora
(Ecc15). A notable exception was the early gene Eip75B, a fly NHR with sequence homology to

mammalian Rev-ErbA [94] that mediates responses to the PPARγ agonist Pioglitazone

[95,96]. Fat body RNAi knockdown of Eip75B enhanced AMP transcript levels, accelerated

pathogen clearance, and increased survival [41]. This finding raises the intriguing possibility

that 20E-EcR can both potentiate and suppress immune responses in the fat body through

pleiotropic regulation of its suite of downstream transcription factors.

Beyond systemic infection in adult flies, Nunes and colleagues [40] provide strong func-

tional evidence that 20E signaling to the larval fat body contributes to AMP induction at Dro-
sophila pupariation. The authors showed that genetically disrupting EcR function specifically

in the fat body fully abrogates the whole-animal transcriptional increase in Drs at pupariation,

indicating a requirement for fat body 20E signaling to up-regulate this AMP. Further epistasis

experiments revealed that the early 20E response gene and direct EcR/Usp target Broad (Br) is
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required downstream of EcR to drive metamorphic Drs induction. Interestingly, the authors

also found that loss of fat body EcR function yielded pupae carrying higher loads of Acetobac-
ter and Lactobacillus, the predominant genera of the Drosophila gut microbiota [64,65]. Collec-

tively, this study’s compelling results support the model wherein developmental, 20E-

dependent immune induction may have evolved to constrain bacterial burden during

metamorphosis.

Together, these reports indicate that 20E signaling to the fat body, the principal organ of

insect innate immunity, regulates immune activation both developmentally and during infec-

tion, via complex but as yet poorly understood mechanisms with important physiological con-

sequences for the animal.

Hemocytes. Hemocytes are present for the duration of the fly’s life cycle, from the embry-

onic through adult stages, and play critical roles in mitigating bacterial and parasitic infection,

wound repair, and clearing of apoptotic cell debris generated by developmental processes

[39,97–101]. In larvae, 20E signaling regulates the production, differentiation, motility, and

phagocytic activity of hemocytes in developmental and infection contexts. In pre-metamor-

phic larvae, the circulating hemocyte population is maintained by hematopoietic divisions of

progenitor cells in the larval lymph gland [39,100]. Ramesh and colleagues [85] recently

showed that 20E signaling to the lymph gland maintains the appropriate number of hemato-

poietic precursor cells by regulating the expression levels of Relish. Loss of EcR function in the

hematopoietic niche cells of the lymph gland leads to decreased levels of Relish transcript and

protein in these cells, resulting in over-proliferation and precocious differentiation of hemo-

cytes, with associated decrease in the maintained pool of progenitors [85].

At the onset of metamorphosis or in response to infection, larval hemocytes increase in

numbers, motility, and phagocytic capability [39,57–59,100]. Hemocytes extracted from pre-

metamorphic third instar larvae and treated with exogenous 20E can be induced to undergo

changes paralleling those observed during development, strongly resembling hemocytes iso-

lated from early pupae [59]. Notably, 20E treatment also induces morphological changes and

increases the phagocytic activity of l(2)mbn cells [102], a cell culture line derived from the lar-

val hemocytes of a tumorous Drosophila mutant [103]. Furthermore, blocking 20E signaling

specifically in the hemocytes disrupts their proliferation, motility, and phagocytic activity in

response to exogenous 20E treatment [59] as well as in vivo during pupariation [58]. Regan

and colleagues [58] showed that this cell autonomous, EcR-dependent activation is required

for hemocytes to phagocytose bacteria and prevent mortality during systemic infection in

pupae. These findings collectively suggest that, in addition to humoral AMP production, 20E-

driven hemocyte activation also contributes to prophylactic immune induction at metamor-

phosis, protecting the insect from bacterial infection at this sensitive life stage.

Gut. The Drosophila intestine is a functionally compartmentalized, cellularly heteroge-

neous epithelium that continuously interacts with ingested, luminal microbes [64,66]. Both the

commensal microbiota and enteric pathogens induce a localized, humoral immune response

in the gut, with effects on intestinal stem cell division, metabolism, development, reproduc-

tion, and longevity [104–109]. In fly larvae, which dwell in and continually feed on the

microbe-rich food substrate, the gut microbiota are a critical determinant of growth rate and

growth capacity. Transcript levels of the 20E biosynthetic enzymes shroud and shade [110] and

the early gene Eip74B [111] have been reported to decrease in germ-free larvae, suggesting

interactions with the gut microbiota can affect expression of certain 20E-related genes during

development. At pupariation, Nunes and colleagues [40] found that 20E-EcR function in the

larval gut (similarly to the fat body) up-regulates multiple AMPs, thereby protecting against

excess microbiota loads in late pupae. The 20E spike that drives pupation therefore addition-

ally activates a localized immune response in the late larval/early pupal gut that constrains
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luminal bacterial populations, insulating the insect from perhaps the most likely route by

which commensal gut microbes could infiltrate metamorphosing insects and become condi-

tionally pathogenic.

Work by multiple labs published within the past 3 years has revealed that 20E also modu-

lates intestinal physiology in adult female flies, a previously unrecognized function of this hor-

mone [86,87,95,112]. Jugder and colleagues [87] found that 20E signals to a specific

population of gut cells to activate the IMD pathway in response to microbiota-derived small

molecules, which in turn suppresses aberrant intestinal lipid accumulation. A previous report

by the same group had shown that acetate produced by the Drosophila microbiota promotes

PGRP-LC-dependent IMD signaling in enteroendocrine cells (EECs) of the gut, which in turn

prevents lipid droplet accumulation in enterocytes via activation of the insulin/insulin-like

growth factor (IIS) signaling pathway [107]. Building on this study, Jugder and colleagues [87]

present compelling genetic evidence that the mechanism of acetate-induced IMD activation in

EECs (and consequent downstream prevention of excess intestinal lipid accumulation)

involves 20E-EcR-dependent transcriptional up-regulation of PGRP-LC. This transcriptional

regulation may occur via an interaction (direct or indirect) between the EcR/Usp complex and

the Tip60 chromatin remodeling complex, which uses acetate-derived acetyl-CoA for histone

acetylation, and could plausibly facilitate chromatin accessibility of the PGRP promoter,

enabling 20E-EcR/Usp-controlled expression induction [87]. Whether this proposed mecha-

nism might contribute to other microbe-responsive gut functions warrants future investiga-

tion. Intriguingly, Ahmed and colleagues [86] recently showed that intestinal stem cell

proliferation activated by enteric infection with the highly virulent, gram-negative pathogen

Pseudomonas entomophila requires Usp and Eip75B, but not EcR, further suggesting complex,

novel mechanisms whereby 20E controls microbe-induced physiological changes in the adult

intestine.

Malpighian tubules. Malpighian tubules are branched tubules that constitute the insect

renal system, extending from the posterior gut. In addition to and intertwined with their pri-

mary excretory functions, malpighian tubules are immune-responsive organs with critical

roles in maintaining physiological homeostasis subsequent to pathogen challenge

[88,89,113,114]. Verma and Tapadia [89] showed that tissue-autonomous transcriptional

induction of AMPs in both larval and adult malpighian tubules requires 20E signaling. Specifi-

cally, they found that 20E-EcR/Usp signaling in malpighian tubules leads to Br-dependent up-

regulation of Relish transcript and protein levels, facilitating robust AMP induction after ex

vivo malpighian tubules are exposed to PGN. Further, RNAi depletion of Br in malpighian

tubules increased the susceptibility of adult flies to oral infection with Escherichia coli [89].

Similar in vivo results were reported by Zheng and colleagues [88]. These authors found that

adult flies preexposed to mild desiccation stress and subsequently allowed to recover exhibited

increased resistance to systemic bacterial infection. Desiccation treatment stimulated 20E pro-

duction, and EcR and PGRP-LC were jointly required in the malpighian tubules for the

observed improvement in survival of infection after desiccation [88]. Together, these studies

indicate that 20E-dependent activation of IMD in malpighian tubules is required for full resis-

tance to both enteric and systemic infections.

Tracheae. The tracheal system in insects comprises an elaborately branched tubular net-

work that serves as the primary site of respiratory gas exchange between the tissues and the

external environment [115]. Similar to other epithelia, tracheal cells express AMPs both consti-

tutively and in response to microbial challenge [51,93,116]. As previously mentioned, Tan and

colleagues [51] found that Drosophila embryos expressed AMPs predominantly in tracheal tis-

sue in response to infection, but were only competent to do so in later stages of embryogenesis,

subsequent to a developmental 20E pulse. However, the authors found that treating embryos
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with exogenous 20E at an earlier developmental stage rendered them capable of mounting this

tracheal immune response, and showed that EcR function was specifically required in tracheae

of late embryos to induce AMPs, constrain bacterial loads, and enable survival following bacte-

rial infection. This study demonstrates that stage-dependent 20E pulses that drive key mor-

phological events during embryogenesis can also prime the embryonic tracheal tissue to

respond to and resist pathogens.

Summary. Altogether, the work discussed in this section shows that circulating 20E acts

through its receptor and downstream signaling targets to activate both the humoral and cellu-

lar arms of the Drosophila innate immune response in multiple organ systems during develop-

ment and infection. Commonalities in regulatory modes across multiple tissue types have

emerged, including Br-dependent up-regulation of both upstream signaling pathway factors

and AMP effector genes [40,41,89]. However, the precise molecular mechanisms by which 20E

exerts these effects are less clear from the extant in vivo studies. As detailed in the next section,

work conducted in cell culture has been powerful for revealing transcriptional regulation of

immune-related genes by the 20E-EcR signaling axis.

Molecular mechanisms of immune gene regulation by 20E signaling

Experiments in Drosophila cell culture lines offer a highly tractable system to test molecular

genetic hypotheses [117]. A long-standing observation that exogenous 20E treatment strongly

potentiates immune responses dates to some of the earliest work establishing immortalized

Drosophila cell lines as tools for immunity research [103,118]. Specifically, cells preincubated

with purified 20E show robust AMP expression following application of microbe-derived sti-

muli including purified bacterial cell wall components like peptidoglycan (PGN) or lipopoly-

saccharide (LPS), while cells not pre-treated with 20E exhibit a weak response [41,46,102,119–

121]. This requirement for 20E to mount a full immune response has been observed in l(2)

mbn cells [46,102] and in the widely used Schneider 2 (S2) cell line, which is derived from

embryonic macrophages [41,118,120,121].

Through a series of elegant experiments investigating the mechanistic basis of 20E-potenti-

ated AMP expression, Rus and colleagues [41] determined that 20E signaling through EcR and

multiple early gene transcription factors drives PGRP-LC expression. This 20E-induced

increase in basal PGRP-LC levels effectively primes the IMD pathway to rapidly respond upon

encountering microbial stimuli like PGN, thereby enhancing downstream AMP production. A

crucial finding supporting this model was that PGRP-LC overexpression in S2 cells obviated

the 20E requirement for PGN-stimulated CecA1, AttA, and Def induction. However, PGRP-LC

overexpressing cells still fully required 20E pretreatment for PGN-induced up-regulation of 3

different AMPs: Dpt, Mtk, and Drs. While Drs is predominantly Toll-regulated [36,122,123],

the failure to up-regulate Dpt and Mtk is particularly intriguing because the authors also

showed that PGRP-LC overexpression in the absence of 20E is still sufficient to drive the IMD

signaling cascade, including Relish cleavage, phosphorylation, and nuclear localization.

Together, these results suggest 20E signaling can promote expression of distinct subsets of

AMPs via multiple regulatory mechanisms, for which there are varying amounts of additional

evidence (Fig 2).

One mechanism supported by Rus and colleagues’ [41] findings involves transcriptional

up-regulation of PGRP-LC via 20E-EcR/Usp-induced early genes, which in turn facilitates

enhanced signaling through the IMD pathway, leading to Relish-driven up-regulation of

AMPs including CecA1, AttA, and Def (Fig 2A). Another possible mechanism is direct tran-

scriptional regulation of AMPs by 20E-regulated early genes encoding downstream nuclear

receptors and transcription factors (Fig 2B). Consistent with this mechanism, Zhang and Palli
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[46] identified a 26 base pair sequence within the Dpt promoter that was necessary for 20E

potentiation of PGN-induced Dpt up-regulation in l(2)mbn cells. Gel shift assays revealed that

this sequence could be bound by nuclear protein extracts in a 20E-dependent, PGN-responsive

manner and, importantly, that this binding was not outcompeted by co-incubation with excess

probe of canonical EcRE DNA. The latter result suggests this sequence may be a direct target

for downstream 20E-regulated transcription factors, as opposed to EcR/Usp. Subsequent motif

enrichment analyses identified an 8 nucleotide sequence within the 20E-responsive Dpt cis reg-

ulatory region that also occurs in the promoters of CecA1, AttA, Mtk, and Drs [46]. In addition

to Zhang and Palli’s [46] work, alongside evidence that Br is required for developmental Drs
induction, putative Br binding sites have been identified in the Drs regulatory region via bioin-

formatics analysis [40]. Collectively, these findings raise the intriguing possibility that 20E-

dependent activation of certain AMPs, including Dpt, Mtk, and Drs, could occur via their

direct transcriptional regulation by EcR/Usp-induced transcription factors like Br, and possi-

bly others (Fig 2B). Importantly, direct transcriptional regulation of PGRP-LC, specific AMPs,

or any other immune-related genes by either EcR/Usp or 20E-regulated transcription factors/

NHRs has yet to be thoroughly documented experimentally, both in cell culture and in vivo.

Given the highly suggestive observations described above, future research should prioritize

testing for these regulatory interactions.

20E-dependent induction of certain AMPs could also involve transcriptional activation of

upstream Toll pathway components (Fig 2C). In line with this, Nunes and colleagues [40]

found that induction of Drs at pupariation was abrogated in flies mutant for the Toll pathway

Fig 2. Proposed transcriptional regulatory mechanisms through which 20E signaling can promote immune activation and AMP expression.

The 20E-EcR/Usp complex induces expression of early genes encoding additional transcription factors including Br, Eip78C, Hr3, Eip93F, and

others, each of which is required for 20E-dependent immune gene induction [40,41,89]. (A) 20E-activated transcription factors such as Br and other

NHRs may directly regulate and increase the expression of the PGRP-LC receptor, which facilitates IMD signaling in response to DAP-type

peptidoglycan (PGN) derived from gram-negative bacteria. IMD signaling downstream of up-regulated PGRP-LC results in Relish (Rel)-dependent

transcriptional induction of IMD-regulated AMPs [41,87,89]. (B) 20E-activated NHRs may bind to cis regulatory sequences in the promoters of

particular AMPs and thereby directly induce their up-regulation in response to as yet unknown intrinsic (developmental) or external (microbial)

signals [40,41,46]. Direct regulation of immune genes including PGRP-LC and various AMPs by 20E-regulated transcription factors warrants further

investigation. Detailed mechanistic studies have shown that Br regulates expression of the miRNAs let-7 and miR-34 [121,124]. Br promotes

expression of let-7, which directly targets Dpt transcripts [124]. miR-34 activates immunity in part by targeting transcripts of the 20E-induced

negative IMD regulator Eip75B [121]. 20E signaling via Br suppresses miR-34 expression, derepressing Eip75B which diminishes IMD activity

through unclear mechanisms that might involve PGRP-LC suppression [41,121]. (C) 20E could potentiate induction of Toll-responsive AMPs by

driving expression of genes coding for Toll pathway components, such as the activating receptor PGRP-SA [55] or fungal-responsive proteins like

GNBP1 and GNBP3. Analogous to the PGRP-LC-dependent mechanism (A), this could facilitate AMP up-regulation via Dorsal-related immunity

factor (Dif)-Dorsal (Dl) activation downstream of canonical Toll signaling [40]. This putative mechanism and the cellular/physiological contexts in

which it might occur have not been thoroughly investigated in Drosophila. AMP, antimicrobial peptide; EcR, ecdysone receptor; NHR, nuclear

hormone receptor; PGRP, peptidoglycan recognition protein; Usp, ultraspiracle; 20E, 20-hydroxyecdysone.

https://doi.org/10.1371/journal.pgen.1010782.g002
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NF-KB Dorsal-related immunity factor (Dif), suggesting 20E-driven developmental Drs up-

regulation may be partially Toll-dependent. Additionally, Han and colleagues [55] recently

reported 20E-dependent expression of the Toll pathway PGN receptor PGRP-SA, and conse-

quent developmental AMP induction, in the locust Locusta migratoria. However, the preva-

lence and mechanisms of 20E-driven Toll pathway activation in Drosophila and other insects

remains largely unexplored relative to IMD signaling and warrants further investigation.

Another mechanism elucidated in cell culture experiments and subsequently observed in

vivo is microRNA (miRNA) modulation of 20E-immune interactions (Fig 2B). Working with

S2 cells, Garbuzov and Tatar [124] found that 20E acts via EcR and Br to induce expression of

the miRNA let-7, which dampens Dpt transcript levels by directly targeting the 30 UTR. Subse-

quent work by Xiong and colleagues [121] showed that another miRNA, miR-34, further con-

tributes to a 20E-mediated feedback network that affects immunity. Sophisticated biochemical

and genetic assays in S2 cells revealed that Br, expressed downstream of 20E-EcR/Usp, directly

represses miR-34 expression by binding to cis regulatory sequences proximal to its genomic

locus. Additional experiments revealed that mir-34 promotes immune activation both in cells

treated with PGN and in adult flies infected with Ecc15. Interestingly, this immune up-regula-

tion required miR-34-targeted down-regulation of the 20E early gene Eip75B, reminiscent of

Rus and colleagues’ [41] finding that RNAi depletion of Eip75B enhanced the survivorship of

Ecc15-infected flies. Collectively, these findings suggest a model wherein 20E-EcR/Usp up-reg-

ulates Br, which in turn simultaneously activates expression of immune genes [40,41,89] and

represses expression of a miRNA with positive IMD regulatory functions, effectively dampen-

ing the immune response in parallel. Further, miR-34 activates immunity, at least in part, by

targeting additional 20E-induced early genes, suggesting a complex feedback mechanism. As

the authors postulate, this regulatory network might enable precise temporal control of 20E-

driven immune responses over the course of an infection, possibly curtailing an extended

inflammatory state that could be deleterious to the animal’s health and fitness [125–127].

In summary, multiple transcriptional regulatory mechanisms for 20E-dependent immune

gene activation are suggested by a range of evidence from cell culture, in vivo, and in silico

studies (Fig 2). Importantly, these mechanisms are not mutually exclusive, and future research

should interrogate their relative contributions to 20E-potentiated immunity under different

physiological conditions.

Outlook: towards an integrated view of endocrine-mediated physiological

responses to the microbial environment

The literature reviewed here demonstrates that 20E generally activates Drosophila cellular and

humoral immunity via multipronged transcriptional regulatory functions in a variety of

organs spanning the fly life cycle. Many questions remain concerning both the mechanistic

details and physiological consequences of this regulation. For example, the spatiotemporal

dynamics of immune regulation by 20E have yet to be determined. These dynamics may be of

particular interest during the early stages of systemic bacterial infection, when rapid immune

induction is crucial [128]. Circulating 20E could plausibly contribute to the distinct expression

kinetics among individual AMPs subsequent to infection [36,37,93,129] by modulating IMD

pathway function across different tissues. This tissue-specific functional plasticity could occur

through interactions between the EcR/Usp complex and transcriptional coactivators or core-

pressors, a well-documented mechanism by which 20E pleiotropically controls varied develop-

mental processes [22,130,131] that may also apply to developmental regulation of immune

processes [40]. Candidate co-regulators that could be important for 20E modulation of immu-

nity could include the Putzig-NURF chromatin remodeling complex, which physically
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interacts with EcR and suppresses hemocyte proliferation [131], and the EcR co-activator Tai-

man, which was recently shown to drive apoptotic events in developing pupal wing tissue via

activation of Toll and suppression of IMD [132].

The recent discovery of Ecdysone Importer (EcI) proteins, found across dipteran clades,

suggests another potential mechanism for tissue-distinct 20E immune responses [71–74]. The

Drosophila genome encodes 4 EcI transporters with empirically demonstrated 20E uptake

function: EcI and EcI-2, -3, and -4 [71,72,74]. Notably, while only EcI is essential for develop-

ment in D. melanogaster, these 4 importers exhibit distinct expression profiles across larval

stages and different organ systems [71,72]. Potential roles for any of the EcI proteins in mediat-

ing 20E-regulated immune responses have not been investigated, but future studies could test

the hypothesis that differences in 20E transporter expression across cell types and physiological

contexts contributes to some of the phenomenological differences discussed in this review.

More broadly, continued utilization of Drosophila genetic tools to precisely manipulate the

function of 20E signaling-related genes, including EcIs and EcR co-regulators, in specific tis-

sues at varied time points post infection will enrich our understanding of the mechanisms

through which 20E affects pathogen-induced immune responses across organ systems.

As discussed above, 20E regulation of innate immunity appears widespread across insect

taxa [1]. Consequently, investigating this regulation in Drosophila will yield discoveries with

potentially major implications for insect disease vectors and human health. Recent studies

have shown that, as in Drosophila, 20E potentiates immune activity in the malaria-transmitting

mosquito Anopheles gambiae [133–136]. Female An. gambiae injected with exogenous 20E dis-

played enhanced immune gene expression and decreased bacterial and Plasmodium pathogen

burdens [134,135]. Topical application of the 20E agonists methoxyfenozide or halofenozide

similarly reduced Plasmodium infectivity [133,136], though the latter compound may achieve

this reduction independently of immune stimulation [133]. Thus, chemical amplification of

endogenous mosquito 20E signaling may provide a novel approach to curtail malaria transmis-

sion [reviewed in 137]. Notably, Hun and colleagues [72] recently found that Aedes aegypti
mosquitoes, which spread severe disease-causing viruses including Zika and dengue, possess

orthologs of the Drosophila EcI-2, -3, and -4 genes but lack an EcI ortholog. In line with this,

only EcI is essential for Drosophila larval maturation, while Ae. aegypti development and

reproduction require EcI-2 and EcI-4, respectively [72]. This observation raises the possibility

to interfere with 20E uptake and downstream physiological functions in specific disease-carry-

ing insect taxa. Continued investigation of the mechanisms underlying 20E-mediated immune

and antimicrobial effects will aid the development of these nascent vector control strategies.

The immune response does not occur in isolation, but is interconnected with the overall

physiology of the animal. Given that 20E is a highly pleiotropic hormone, another major unre-

solved question is whether 20E also impacts infection outcome indirectly through its effects on

other physiological processes, such as metabolism and reproduction, in addition to its role in

direct regulation of immunity. The massive production of AMPs following systemic infection

is extremely energetically costly [92], and 20E could support immunity by signaling to meta-

bolic organs like the gut and fat body to mediate catabolism of energy stores that fuel AMP

synthesis. Additionally, reproduction and immunity are functionally linked, with reproductive

activity generally being associated with suppressed immune capabilities [2,138–142]. In adult

female Drosophila, 20E is produced by the ovaries in response to mating [86,95] and sustains

multiple steps of oogenesis [143–145]. 20E signaling within the germline could therefore have

an indirect, suppressive effect on immunity by promoting energetic investment in reproduc-

tion, occurring simultaneously with and in parallel to its immune activation functions in

organs like the fat body, hemocytes, gut, and malpighian tubules. In line with this, Wang and

colleagues [146] recently reported that in female Ae. aegypti mosquitoes, 20E signaling
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activated by ingestion of a blood meal up-regulates the IMD suppressor protein Pirk-like,

which both dampens immune activation in the fat body and promotes ovary development and

egg laying. Additional experimental examination of 20E-mediated immune–reproduction

interactions across multiple insect taxa is ripe for future study. More generally, 20E is likely to

modulate immunity in complex and multifarious ways extending beyond the positive tran-

scriptional regulation of immune genes that thus far has received the greatest research atten-

tion. These 20E-mediated effects may involve the coordinated regulation of multiple biological

processes across functionally diverse organ systems to directly and indirectly alter immune

function. This is in line with the general property of hormones as chemical messengers that

facilitate inter-organ crosstalk and physiological integration [147]. Future investigations

should attempt to untangle the ways in which 20E could regulate immunity within the over-

arching physiological context of the infected insect and determine how environmental vari-

ables might add an additional layer of complexity to these regulatory relationships.

Lastly, exploration of 20E-mediated host–microbe dynamics should expand beyond study-

ing the independent functions of this hormone to consider 20E activity within the larger endo-

crine networks that determine animal physiology. Indeed, other major Drosophila hormone

systems, including the insulin/insulin-like growth factor signaling (IIS) pathway and the ses-

quiterpenoid Juvenile Hormone (JH), also affect immunity, development, metabolism, and

infection outcome [120,141,148,149]. During the larval life stages, 20E, JH, and IIS interact via

complex feedback systems that can be cooperative or antagonistic depending on timing and

tissue contexts to drive developmental growth. These regulatory relationships are likely also

relevant to developmental immune induction and in response to microbial infection at the lar-

val and adult life stages. For example, JH has an immune-suppressive effect in Drosophila
[120,141,150] that contrasts with immune activation by 20E, and cell culture evidence suggests

JH can antagonize 20E’s immune-stimulatory properties [120]. These counterbalancing rela-

tionships have not been examined in vivo. An imperative long-term goal of this field should be

to understand how these endocrine signaling pathways interact across organ systems and bio-

logical scales, spanning the chemical to the organismal, to control immunity and other aspects

of animal physiology. While this integrated view is inherently more challenging to study,

genetically tractable model organisms like Drosophila will enable discoveries about endocrine–

immune relationships which can then be investigated for evolutionary conservation in other

insect taxa. Further, these studies will likely uncover mechanistic principles that can be broadly

applied to the pleiotropic actions of hormones across animal–microbe interactions [2]. As

such, work in this exciting and developing field will yield key insights about how the microbial

environment can exert evolutionary pressures on metazoans and may lead to new therapeutic

strategies to combat infectious diseases.
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