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Interactions between
innate immunity and insulin
signaling affect resistance
to infection in insects

Andrea M. Darby1,2* and Brian P. Lazzaro1,2

1Department of Entomology, Cornell University, Ithaca, NY, United States, 2Cornell Institute of
Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY, United States
An active immune response is energetically demanding and requires reallocation

of nutrients to support resistance to and tolerance of infection. Insulin signaling is

a critical global regulator of metabolism and whole-body homeostasis in

response to nutrient availability and energetic needs, including those required

for mobilization of energy in support of the immune system. In this review, we

share findings that demonstrate interactions between innate immune activity and

insulin signaling primarily in the insect model Drosophila melanogaster as well as

other insects like Bombyx mori and Anophelesmosquitos. These studies indicate

that insulin signaling and innate immune activation have reciprocal effects on

each other, but that those effects vary depending on the type of pathogen, route

of infection, and nutritional status of the host. Future research will be required to

further understand the detailed mechanisms by which innate immunity and

insulin signaling activity impact each other.
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Introduction

Innate immunity and insulin/insulin-like signaling (IIS) are both integral for

homeostasis and anti-pathogen defense in insects. An immune response is critical for

protecting an organism from invading pathogens that pirate resources and reproduce

within the host (1, 2). The IIS pathway functions as a nutrient-sensing pathway that

regulates cell and tissue growth, as well as whole-organism metabolism (3, 4). Innate

immunity and IIS activity have been thought of as independent processes, but

developments over the past decade have demonstrated them to be connected in

mobilizing energy stores required for an effective immune response (5). In this review,

we will discuss what we know of the physiological consequences and genetic mechanisms

underlying interactions between insulin and immune pathways in insects, emphasizing

primary examples from Drosophila melanogaster and integrating data from other

insect models.
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The innate immune system and IIS pathway are highly

conserved across insect orders. Comparative genomics has

revealed considerable conservation of orthologs in immune genes

across almost all insects whose genomes have been sequenced (6).

Similarly, insulin like-peptides (ILPs) that share structural and

functional homology to mammalian insulin, have also been

identified in major insect orders including Orthoptera, Diptera,

Hymenoptera, Coleoptera, and Hemiptera (7–11). Concurrently,

the development of genetic technologies from RNAi to CRISPR/

Cas9 has enabled us to begin to understand how these pathways

operate and how they impact each other across diverse insects (12–

17), paving the way for future studies of how these systems interact

to maintain organismal homeostasis in the presence and absence

of infection.
Effect of infection on metabolism and
energetic stores

Mounting an immune response is an energetically costly

process, requiring systemic physiological shifts in metabolism and

energetic stores (16, 18–21). A broad range of pathogenic infections,

from bacterial, viral, parasitic, or fungal, can lead to decreases in

energetic stores like glycogen and triglycerides (12, 22–26). In

insects, the fat body is a multifunctional tissue that can secrete

antimicrobial peptides in response to immune stimulus and is also a

site for the storage and breakdown of carbohydrates and lipids (27).

Energetic stores like glycogen can be critical for supplying energy to

activate the immune response. Glycogen is the polymeric form of

glucose, and can be broken down in tissues like the fat body to be

released into the hemolymph as free glucose by the enzyme

glycogen phosphorylase (glyp) (28). D. melanogaster exhibit

decreased glycogen levels and increased circulating glucose levels

after infection with Streptococcus pneumoniae, with increased gene

expression of glyp stimulated by the extracellular release of

adenosine (25, 29). Phagocytic immune cells uptake the

circulating glucose during the acute phase of S. pneumoniae

infection, enabling phagocytosis. D. melanogaster deficient for the

adenosine receptor or glyp exhibit lower levels of glycogen and

higher mortality after S. pneumoniae infection (25, 29).

A metabolomics study on larvae of the silkworm Bombyx mori

infected with the entomophathogenic fungi Beauveria bassiana

found major shifts in hemolymph levels of metabolites like lipids,

carbohydrates, and amino acids after infection (30). Fungal

infection also caused higher levels of glucose and an associated

reduction in trehalose (30). Trehalose is a disaccharide comprised of

two glucose molecules that can be readily liberated into free glucose

by the enzyme trehalase. Trehalose is the primary sugar found in

insect hemolymph and is used for energetic needs like flight and

metabolic homeostasis (28, 31). Although Xu et al. (30) did not

measure trehalase activity, Praveena et al. (32) found that trehalase

activity progressively diminishes in the hemolymph of B. mori

larvae over five days of B. beauveria infection while they remain

consistent in uninfected controls. These authors hypothesize that

trehalase activity reduces over the course of the infection because

the early hydrolysis of trehalose to glucose consumes the substrate
Frontiers in Immunology 02
pool available for conversion. The data suggest that during a fungal

infection, trehalose may be converted to glucose to allocate energy

to fighting the infection.

The breakdown of glycogen and trehalose provides free glucose

for immune cell function (29). However, the role of triglyceride

breakdown during infection is less well established. It has been

recently demonstrated that D. melanogaster larvae exhibit reduced

triglyceride stores during an active immune response, and shift

from lipid storage to synthesizing phosphatidylcholine (PC) and

phosphatidylethanolamine (PE) (16), which are two of the major

phospholipids that comprise secretory vesicles and cell and

organelle membranes (33). Active humoral immune responses

drive high levels of AMP gene expression (e.g., 34), which could

put a heavy burden for the endoplasmic reticulum (ER) to

synthesize and secrete the encoded effectors into circulation. This

shift to PE and PC synthesis during chronic immune activation has

been hypothesized to support the secretion of immune effectors

during the immune response.

Cellular stresses, including those imposed by immune reactions,

stimulate the unfolded protein response (UPR) to allow the

endoplasmic reticulum (ER) to regulate proper folding and

secretion of proteins (35, 36). One marker of UPR in the ER is

the upregulation of the transcription factor X-box binding protein 1

(XBP1), which positively regulates phospholipid synthesis and

enzymes that increase the size of the ER (37). Both infection (34,

38) and chronic immune activation in the fat body (16) have been

demonstrated to increase gene expression of XBP1. This elevated

expression of ER-stress response genes is also associated with

increased expansion of the ER lumen in infected mated females

(38) and in uninfected larvae with an overactive immune response

(16). These results suggest that the innate immune response induces

ER stress, which increases phospholipid synthesis to support

secretion of immune effectors. The infection-induced reduction of

triglyceride stores observed across several D. melanogaster studies

(12, 19, 23, 39) could arise from a need to mobilize energetic

stores to support ER homeostasis by way of upregulating

phospholipid synthesis.

Sustained long-term infections can result in energetic wasting.

In a healthy animal, insulin signaling regulates glucose homeostasis

(40, 41). Phosphorylation of the IIS protein Akt leads to uptake of

extracellular glucose (42) and promotes glycogen and triglyceride

synthesis (43) by positively regulating the genes glycogen synthase

and acetyl coenzyme-A (Figure 1; 44–46). Dionne et al. (12)

demonstrated that Drosophila melanogaster infected with the

bacterium Mycobacterium marinum exhibit impaired IIS activity

over several days of infection. Reduction in phosphorylation of Akt

leads to reduced expression of glycogen synthase and acetyl

coenzyme-A. Consequently, flies infected with M. marinum

become hyperglycemic and progressively lose glycogen and

triglyceride stores until they ultimately die from the infection.

In examples such as this (12, 23) it can be difficult to determine

whether the metabolic change reflects a manipulation of the host by

the parasite for the parasite’s own nutritional benefit, or whether the

wasting reflects a collateral cost of sustained immune reactions. In

the case of bacteria in the genus Mycobacterium, the bacteria

primarily depend on lipids like cholesterol as their source of
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carbon (47, 48) and a large portion of the genome for this genus is

devoted to lipid metabolism (49). It is possible that wasting

phenotypes observed in this infection could be a result of

pathogen nutrient acquisition. This can be distinguished with

appropriately designed experiments. For example, one human

study investigated metabolic shifts induced by infection with

Mycobacterium tuberculosis (Mtb), the causative agent of

tuberculosis (TB). These authors measured metabolic shifts in

blood samples from patients that were healthy, patients infected

with Mtb and given short-term antibiotic treatment, and Mtb-

infected patients without treatment (50). They found that Mtb

infection, regardless of treatment, significantly shifted metabolic

profiles compared to healthy patients, and they observed no

significant differences in metabolites between TB patients treated

with antibiotics or not, despite reduced pathogen load in patients

given antibiotics (50). These authors suggest that their observation

that antibiotic treatment does not impact infection-induced

metabolic shifts implies that the host consumes metabolites
Frontiers in Immunology 03
during an active immune response. This study does not rule out

the possibility that virulence factors produced by the pathogen

could continue to impact host metabolism even after pathogen

loads are reduced by antibiotic treatment. However, it can serve as

an example of how to begin to study whether metabolic

consequences of infection are due to host energetic reallocation or

pathogen nutrient acquisition.
Effects of dietary sugar on
immune outcome

Both the immune system and insulin signaling are heavily

influenced by dietary nutrition (51–55), thus any variation in the

composition of diet can influence an organism’s ability to resist

infection and regulate global metabolism. When Drosophila

melanogaster are reared on high glucose (0.57 M), they

experience reduced resistance to a systemic infection by the
FIGURE 1

Insulin and innate immune pathway signaling overview in insects. The Toll and the immune deficiency (IMD) pathways are the two major innate
immune signaling pathways that are induced upon bacterial or fungal infection, leading to the production of antimicrobial peptides (AMPs). The Toll
receptor is activated by the cleaved form of the cytokine Spätzle, which is processed in a proteolytic cascade after the detection of Gram-positive
bacteria or fungi. Once Toll is active, it initiates an intracellular cascade that leads to activation of the nuclear factor kB (NF-kB) transcription factor
Dif. When activated, Dif translocate to the nucleus to initiate AMP transcription. IMD signaling is initiated by peptidoglycan recognition protein LC
(PGRP-LC) or peptidoglycan recognition protein LE (PGRP-LE) binding DAP-type peptidoglycan shed by Gram-negative bacteria and some Gram-
positive bacteria. This binding triggers a cascade that activates the NF-kB transcription factor Relish to translocate to the nucleus to transcribe AMPs.
Insulin signaling activity begins with the production of insulin-like peptides (ILPs), which are predominantly secreted from insulin-producing cells and
from other tissue sources like the fat body or muscle. An intracellular cascade occurs after ILPS bind to the insulin receptor, activating the protein
Akt. Once Akt is active, it impacts multiple downstream processes within the cell, including inhibition of nuclear translocation of the forkhead family
transcription factor, Forkhead box-O (FOXO), which can regulate transcription of AMPs, and the lipase brummer (bmm). Akt activation also
stimulates the target of rapamycin (TOR) pathway by TSC1/TSC2 suppression. TOR is also activated by amino acid sensing. Downstream targets of
TOR activation include repression of the forkhead box family member forkhead (FKH), which also regulates AMP transcription, activation of the
protein kinase S6K, which is critical for growth processes, and the inhibition of translational regulator 4E-BP (eukaryotic initiation factor 4 binding
protein). Arrows in the figure denote positive interactions and bars denote negative interactions. Double arrows indicate that additional steps in the
pathway are not illustrated. IRS, insulin receptor substrate; IMPL2, ecdysone-inducible gene L2; PI3K; phosphatidylinositol 3-kinase; PTEN,
phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase; PDK1 (phosphoinositide-dependent protein kinase); TSC, tuberous sclerosis tumor
suppressor Rheb, Ras homolog enriched in brain; S6K, ribosomal S6 kinase.
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bacterial pathogen Providencia rettgeri (56). Similarly, those reared

on high sucrose (1 M) experience increased mortality following

infection by the pathogen Pseudomonas aeruginosa (52). High

sucrose diets also impair immunological melanization in larval

hemolymph (52) and reduce phagocytosis of fungal spores by D.

melanogaster larvae (53).

IIS activity might mediate the higher post-infection mortality

observed in flies fed high-sugar diets. Musselman et al. (52) found

through an RNA-seq analysis that uninfected larvae with

knockdown of the insulin receptor (InR) in the fat body exhibit

elevated expression of AMPs while larvae with constitutive

activation of InR in the fat body exhibit reduced AMP expression.

Knockdown of InR in the adult fat body increases survivorship of

systemic P. aerugionsa infection in flies fed a high-sugar (0.7 M) diet

(52). These data suggest that reduction in insulin signaling could

increase infection survival on high-sugar diets, potentially due to

elevated expression of immune effectors. In that study, however,

they did not specifically measure AMP expression during an

infection in flies with InR knockdown so it remains to be

determined whether InR knockdown promotes survival of

infection by elevating AMP expression.

These systemic infections performed by Unckless et al. (56) and

Musselman et al. (52) were performed on Drosophila reared on high

dietary sugar throughout larval development. High-sugar diets

cause developmental delays, lipidemia, hyperglycemia, and

reduced body size in both larvae and adults (51, 52). Thus, the

consequences of a high-sugar diet on adult defense could be due to

dietary effects on larval development that may affect immune

capacity in the adult stage. For example, D. melanogaster larvae

fed high yeast diets exhibit increased expression of antimicrobials as

adults (57). Drosophila larvae fed low-protein diets have lower

counts of phagocytic immune cells (58) and are more susceptible

to systemic Pseudomonas entomophila infection in the adult stage

(59). Mosquito larvae fed low protein diets were more susceptible to

Plasmodium falciparum (60) and Sindbis virus infections (61).

Infection in the D. melanogaster larval stage can also affect adult

fitness, including reduced lifespan (62) and smaller body size (63).

Future research should distinguish between the immediate

metabolic effects and developmental effects of sugar overnutrition.

One strategy for doing this is to rear juveniles on the same rearing

medium then transfer adults to varied experimental diets after

development is complete. This approach could be directly

compared to cohorts of insects that are reared on varied diets

high in dietary sugar to determine the relative contributions of

developmental history and immediate metabolic dysregulation on

immune function.

Some studies suggest a potentially protective effect of dietary

sugar during enteric infection. For example, D. melanogaster fed

high-glucose diets (0.55 M) exhibit increased survival after an

enteric Vibrio cholerae infection (64). Feeding sugar to the

mosquito Aedes aegypti also increases expression of antiviral

genes in the intestinal tract and protects mosquitos from oral

arbovirus infections (65). High-sugar diets have been

demonstrated to elevate reactive oxygen species levels (66) and

increase expression of antimicrobial peptides (67) in the midgut of

D. melanogaster. These data suggest high-sugar diets may alter gut
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immunity, potentially as a consequence of dysregulation of the

endogenous microbiota (68), which would not occur in the

hemocoel during a systemic infection. These data draw attention

to important differences in the consequences of dietary sugar that

may depend on whether the infection is acquired systemically

or orally.

The dependency of infection-related phenotypes on dietary

nutrition raises an important concern for comparisons across

studies performed by different research groups. There is very little

standardization of diets used for rearing D. melanogaster in

infection studies (69, 70). For example, the diet used for the

enteric infection referenced in (64) was a holidic (chemically-

defined) diet, which is known to delay development relative to

sugar-yeast based diets that are standard in D. melanogaster studies

(71, 72), and the definition of “high” sugar varied nearly 2-fold

between Musselman et al. (52) and Unckless et al. (56). Potentially,

differences in dietary composition between studies could affect

metabolism and infection phenotypes even when diet is not itself

an explicit focus of the experiment.
Consequences of innate immune
activation on insulin signaling

Transcriptomic studies of infected insects often show

differential expression of genes in gene ontology (GO) categories

related to carbohydrate and lipid metabolism (34, 73–75). The IIS

pathway is a critical regulator of carbohydrate and lipid metabolism

(4, 76, 77). Thus, infection-induced shifts in carbohydrate and lipid

metabolism could be mediated by alterations in IIS activity driven

by the immune system.

The Toll signaling pathway (Figure 1) is one of two major

innate immune signaling pathways in insects (78). Toll signaling is

homologous to Toll-like signaling in vertebrates (79) and leads to

activation of the NF-kB transcription factor Dif. Gram-positive

bacterial and fungal pathogens primarily activate Toll signaling (80,

81). Activation of Toll in the D. melanogaster fat body either

through genetic manipulation or infection suppresses insulin

signaling as measured by reduced phosphorylation of Akt (19, 39,

82). Since the insulin pathway is critical for regulating growth and

lipid metabolism (76, 77), inhibition of IIS activity by Toll activation

during development results in reduced body size and depletion of

triglyceride stores (19, 82).

Suzawa et al. (82) showed that infection of D. melanogaster

larvae with the Gram-positive bacterium Enterococcus faecalis

reduces production of insulin-like peptide 6 (dILP6), which is an

ILP secreted from the fat body that regulates larval growth (83, 84).

Overexpression of Dif in the larval fat body also reduces dILP6

mRNA transcripts, and the infection-induced reduction in dILP6

and growth inhibition can be rescued by RNAi knockdown of Dif

(82). Roth et al. (39) further found that activation of Toll in the

larval fat body inhibits PDK1 from phosphorylating Akt at residue

T342, resulting in growth inhibition and reduced triglyceride

storage (39). Body size and triglyceride storage were rescued by

forced phosphorylation of Akt site T342 in the fat body of larvae

with constitutively activated Toll (39). These results clearly place
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https://doi.org/10.3389/fimmu.2023.1276357
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Darby and Lazzaro 10.3389/fimmu.2023.1276357
alteration of dILP6-production and larval insulin signaling

downstream of the Toll signaling pathway. However, further

experiments are required to test whether Dif directly regulates

dILP6 expression or whether insulin signaling is secondarily

regulated by proteins whose expression is directly controlled by Dif.

The immune deficiency (IMD) pathway (Figure 1) is the second

main arm of the insect innate immune system (73). IMD signaling

is responsive to DAP-type peptidoglycan shed by Gram-negative

bacteria as well as some Bacillus species (81) and activates the NF-

kB transcription factor Relish to induce transcription of

antimicrobial peptides and other immune response genes

(Figure 1; 81, 85). There is mixed evidence of IMD activity

impacting insulin signaling and mobilization of energetic stores in

D. melanogaster. DiAngelo et al. (19) found that constitutive

activation of Relish in the fat body did not significantly impact

Akt phosphorylation or triglyceride content (19). Although

infection with the Gram-negative bacterium Escherichia coli

reduced Akt phosphorylation, the suppression was lost when Toll

pathway mutants were infected with E. coli, indicating that the

attenuation of IIS was due to cross activation of the Toll pathway

and not due to IMD signaling (19). In contrast, Davoodi et al. (86)

found that constitutive activation of the IMD protein in the fat body

significantly reduces phosphorylation of Akt and S6K throughout

the body. S6K is a serine kinase downstream of Akt (Figure 1) that is

critical for regulating larval growth (87). IMD activation in the fat

body also reduced total triglyceride and trehalose levels in 3rd-instar

larvae (86). Those larvae weighed less, had delayed development,

and had reduced adult eclosion rates. These phenotypes are similar

to those of insulin-signaling mutants and flies that overexpress Toll

in the fat body (19, 88). One major difference between these two

studies is the fly genotypes used to constitutively activate the IMD

signaling pathway. Davoodi et al. (86) overexpressed the IMD

protein where DiAngelo et al. (19) forced constitutive expression

of the transcription factor Relish. The IMD molecule is an adaptor

protein that acts upstream of Relish (Figure 1; 81), and, when

activated, it triggers an intracellular signaling cascade that results in

Relish activation (89). Potentially, there may be branching of the

IMD pathway such that targets downstream of the IMD protein that

disrupts insulin signaling and alter metabolic stores may not be

regulated by Relish.

Davoodi et al. (86), also performed a transcriptomic analysis on

larval fat body with constitutive IMD protein activation and

identified modified expression of genes that regulate metabolic

processes. Genes involved in the negative regulation of IIS were

upregulated, including impl2 and downstream targets of IIS like 4E-

BP (86). Lipid synthesis and gluconeogenesis genes were conversely

downregulated in larvae with constitutive expression of the IMD

pathway (86). These transcriptional data suggest that the IMD

pathway, like Toll signaling, can influence metabolism.

Toll and IMD signaling are both critical for systemic immunity,

however, the IMD pathway is primarily responsible for regulating gut

immunity, including in response to endogenous microbiota (90).

Impaired IMD signaling in the gut has been demonstrated to affect

insulin signaling activity and metabolic stores. Kamareddine et al.

(91) found a significant depletion of lipids in the fat body and an

accumulation of lipid droplets in the anterior region of the midguts of
Frontiers in Immunology 05
several IMD mutants of D. melanogaster (Dredd, key, RelE20, PGRP-

LC and PGRP-LE) in the absence of a systemic infection. Despite

having depleted lipids in the fat body, whole-body triglyceride

content and glucose levels were higher in the IMD mutants. These

mutants also exhibited lower levels of Ilp3 transcripts and reduced

phosphorylated Akt in the intestine (91). Davoodi et al. (86) similarly

observed that uninfected imd mutants have higher whole-body

triglyceride levels and reduced expression of Ilp2, Ilp3, and Ilp5,

although only inmales. These results demonstrate that IMD signaling

plays a critical role in regulating metabolic homeostasis even in the

absence of systemic infection, potentially through actions in the gut

or on the endogenous gut microbiota.

The insect digestive tract is a complex organ composed of

multiple cell types that vary in function including immune

defense, absorption of nutrients, and lipid metabolism (92).

Enteroendocrine (EE) cells in the midgut epithelium produce

hormones, regulate stem cell activity, and express insulin-like

peptides (93). Kamareddine et al. (91) found that Relish

knockdown in EE cells reduced Ilp3 transcripts in the gut,

increased EE lipid content, and reduced phosphorylation of Akt,

while Relish knockdown in the fat body yielded no effect on Akt

phosphorylation, triglyceride levels, or glucose content (91).

Previous studies have demonstrated a role for commensal D.

melanogaster gut microbiota like Acetobactor pomorum in

regulating host metabolism, particularly via the microbial

metabolic byproduct acetate (94, 95). Provision of acetate to

germ-free flies increases nuclear localization of Relish and

restores Akt phosphorylation (91). Germ-free wildtype flies have

reduced IMD activity and exhibit metabolic phenotypes similar to

those offlies with IMD knockdown in EE cells (91). Reciprocally, IIS

activity and metabolic homeostasis are restored by overexpression

of Relish in the EE cells of germ-free flies (91).

These data corroborate findings from an earlier microarray

study that demonstrate microbiota-induced expression of host gene

expression is Relish-dependent (96). Particularly, that study found

that conventionally-reared flies exhibit upregulation of 285 genes in

the gut relative to flies reared germ-free, and that GO categories for

metabolic genes were enriched. When those authors then compared

the transcriptomes of germ-free and conventionally reared Relish

mutants, they found that expression of 151 of those 285 genes

upregulated in response to microbiota was altered, including the

insulin signaling genes PI3K, InR, and thor (96). Several other

studies similarly demonstrate microbiota-Relish-dependent

regulation of host gene expression in the gut. For example, oral

infection with Erwinia carotovora also causes shifts in midgut gene

expression that are Relish-dependent, including both immune and

metabolic gene regulators (90). Relish mutants do not exhibit

expression of microbiota-regulated genes observed in wildtype

flies, regardless of whether they are germ-free or associated with

microbiota (97). These data suggest a model whereby the host IMD

pathway regulates the gut microbiota to maintain metabolic

homeostasis, including through altered production of IIS activity

by microbiota-derived metabolites such as acetate. However, the

mechanistic details of signal integration under this model are

unclear, and future experiments should study how downstream
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effectors of the IMD pathway interact with components of IIS to

shape global metabolic regulation.

Since the IIS pathway is a critical global regulator of metabolism

(76), it is also vital for regulating communication among tissues,

and there are several studies that demonstrate innate immune

activation also stimulating inter-organ communication in

response to infection in Drosophila (98–100; see 101 for a review

on inter-organ communication during an immune response). For

example, glutamate derived from the muscle stimulates reallocation

of lipids from the fat body to improve survivorship during oral

infection with Pseudomonas entomophila (100). While not often

directly investigated, there is evidence to suggest tissue

communication during an immune response occurs in part by

altered IIS activity. One study found that both systemic infection

and overexpression of Toll and IMD in the fat body increased

triglyceride and lipid droplet size in the midgut (99). This increase

in lipid accumulation in the midgut was also associated with

increased midgut gene expression of negative IIS regulators like

Impl2 and thor (99), which suggests that Toll and IMD activation in

the fat body can suppress IIS activity in the midgut in response to

innate immune activity in the fat body. In this study, lipid

accumulation in the midgut was critical for surviving systemic

Photorhabdus luminsecens infection (99). It is an exciting avenue

of research to consider the extent to which innate immune activity

and IIS activity may communicate across tissues to drive organism-

level responses and increase survivorship during infection.
Effects of insulin signaling on
innate immunity

Several studies in D. melanogaster have characterized the effect

that suppressing IIS activity has on infection outcome. The insulin

receptor substrate chico is important for mediating the downstream

cascade of IIS activity after insulin-like peptides bind to the insulin

receptor (Figure 1, 76, 88). Chico mutants experienced increased

survival of systemic infection by Pseudomonas aeruginosa and

Enterococcus faecalis compared to wildtype flies (102). This higher

rate of survivorship post-infection was not associated with

increased levels of infection-induced gene expression of the AMP-

encoding genes Diptericin, Attacin, and Drosomycin, although chico

mutants do exhibit increased expression of thor in response to

infection (102). Thor is an inhibitor of 5’-cap-dependent mRNA

translation (103) and can prioritize translation of AMPs during an

infection (104). Systemic infection with several different bacteria

induces higher expression of thor (34, 104, 105) and thor mutants

are highly susceptible to bacterial and fungal infection (104–106).

Potentially, suppression of insulin signaling could be indirectly

protective against infection due to downstream effects on cap-

independent translation of proteins like AMPs.

A subsequent study conducted by McCormack et al. (107)

found that chico mutants sustained lower pathogen loads after

systemic infection with E. coli and Photorhabdus luminescens,

although survivorship proportion was similar to wildtype flies.

The effects on immune system activity were mixed, with reduced

infection-induced transcription of the AMP genes Diptericin,
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Cecropin A1, and Drosomycin, and even reduced phagocytic

capacity (107). However, the chico mutants exhibited increased

phenoloxidase activity and melanization compared to wildtype.

Melanization is important for insect wound healing and to clear

pathogens at an injury site (108) and has been demonstrated to

increase survivorship after bacterial and fungal infections (109).

Potentially, increased phenoloxidase activity could also contribute

to the increased survivorship of E. faecalis infection observed by

Libert et al. (102) since melanization is also important for surviving

E. faecalis infection (109). Similarly, higher phenoloxidase and

melanization activity has been suggested to increase survivorship

after P. luminescens infection (110, 111). However, melanization

activity is not critical for surviving E. coli infection (112), thus

improved phenoloxidase activity alone does not fully explain

improved survivorship for chico mutants after E. coli infections

observed by Libert et al. (102).

A more recent study assaying the effect of disrupted IIS activity

on infection survival in D. melanogaster further demonstrated

pathogen-specific infection outcomes. Davoodi et al. (86)

delivered systemic and oral infections with five different bacterial

pathogens (Vibrio cholerae, Enterococcus faecalis, Pseudomonas

sneebia, Providencia rettgeri, and a virulent strain of Serratia

marcescens) to triple mutants of insulin-like peptides 2, 3, and

5. P. sneebia systemic infections resulted in 100% mortality for

both wildtype and ILP mutants, while systemic infection for all

other bacteria tested resulted in higher proportion of death in

ilp2,3,5 mutants. Pathogen loads were higher for ilp2,3,5 mutants

only after systemic infection with P. rettgeri and E. faecalis. In

contrast, ilp2,3,5 mutants showed higher survival of oral infection

with P. sneebia, V. cholerae and S. marcescens, although only V.

cholerae loads were reduced in ilp2,3,5 mutants (86). When IIS

activity is increased due to mutation in the IIS pathway antagonist

impl2, flies suffered higher mortality and increased pathogen load

than wildtype after oral V. cholerae infection (86). Collectively,

these data suggest that functional IIS activity increases susceptibility

to oral infections. D. melanogaster with oral infection of V. cholerae

exhibit reduced activation of the IIS pathway (95), which further

suggest that reduction in IIS activity could be a protective

mechanism against enteric V. cholerae infections.

The combination of results across all studies demonstrates that

the effects of IIS signaling on immunity varies with the specific

pathogen and route of infection in D. melanogaster. Future

experiments using tissue-specific approaches to manipulate IIS

could elucidate how specific organs contribute to the interaction

between IIS and immunity. Additionally, conditional genetic

manipulations could be deployed to differentiate immediate

immunological effects of altered insulin signaling from pleiotropic

consequences of developmental effects due to constitutively

altered IIS.

There is also evidence that IIS affects immunity in mosquitoes.

For example, several studies demonstrate that Plasmodium

infection results in IIS activation and host immune suppression in

Anopheles stephensi mosquitoes (e.g., 113, 114). P. falciparum

infection induces the transcription of insulin-like peptide 1, 3, 4,

and 5 in A. stephensi (10, 114). Artificial feeding of insulin-like

peptide 3 (ILP3) and insulin-like peptide 4 (ILP4) to A. stephensi
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results in reduced expression of NF-kB-dependent genes in the

midgut, including those encoding the antimicrobial peptides

Gambicin, Cecropin, and Defensin (113, 115) and encapsulation-

related proteins APL1, TEP1, LRIM1 (115). Similarly, feeding ILP4

or human insulin to A. stephensi at levels expected to be present in a

bloodmeal (170 pM) induces IIS pathway activation and increases

prevalence Plasmodium falciparum (113, 115, 116), where

prevalence is defined as the proportion of mosquitos within the

experimental population that become infected with Plasmodium.

Reciprocally, inhibition of IIS activity with the PI3K inhibitor

LY294002 or morpholinos that target ILP3 and ILP4 reduces the

prevalence of P. falciparum infection and increases the expression

level of immune effector genes in the mosquito midgut (113, 114).

Together, these results demonstrate that insulin produced

endogenously or obtained from a bloodmeal can suppress

mosquito immune activity and could benefit infecting Plasmodium.

In a reciprocal experiment, Hauck et al. (117) demonstrated

that overexpression of a negative regulator of Akt, phosphatase and

tensin homolog (PTEN, Figure 1), in the A. stephensi midgut can

reduce prevalence of Plasmodium infection. The proportion of

PTEN-overexpressing mosquitos that became infected with P.

falciparum was significantly lower than in wildtype controls and

the transgenic mosquitoes developed fewer oocysts (117). Despite

reduced prevalence of Plasmodium in the midgut, there was no

effect on infection-induced expression of the AMP gene Defensin or

in genes responsible for controlling P. falciparum, including NOS,

TEP1, APL1, LRIM1 (117). PTEN overexpression enhanced

expression of genes that promote autophagy, which is associated

with midgut integrity and improves infection resistance, and

midguts that overexpressed PTEN were less permeable than

midguts that overexpress Akt (117). Thus, enhanced midgut

integrity may provide another mechanism for reduced prevalence

of Plasmodium in IIS-suppressed mosquitoes.

Nevertheless, an independent set of studies suggested an

opposite phenomenon. Corby-Harris et al. (13) generated

transgenic A. stephensi lines that drive constitutive activation of

Akt under the control of the midgut carboxypeptidase promoter to

assay the effects that midgut Akt activation has on Plasmodium

development. In contrast to the previously cited studies, they found

that activation of Akt significantly reduced prevalence of oocysts in

the midgut and the proportion of mosquitos infected with P.

fa lc iparum (13) , with Akt overexpress ion impact ing

mitochondrial function and the production of nitric oxide species

(NOS) (13, 118). NOS has been associated with killing Plasmodium

berghei and Plasmodium falciparum (119–121). Suppression of

NOS in mosquitos that overexpress Akt increases their

susceptibility to P. falciparum infection, demonstrating that the

Akt-induced suppression of Plasmodium prevalence is mediated at

least in part by elevated NOS levels (122). Overexpression of Akt in

the midgut also results in abnormal mitochondria morphology and

significantly reduced number of mitochondria in the midgut (122),

with mitochondrial dysfunction evident in reduced activity of

Mitochondrial Complexes I, II-II, and V. Additionally, Akt-

overexpression in the fat body of mosquitos systemically infected

with E. coli or Bacillus subtilis led to higher induction of

antimicrobial peptides and higher survivorship of infection (118).
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These findings suggest that activation of IIS pathway in the fat body

and midgut can induce an immune response to limit Plasmodium

falciparum development and control bacterial infections.

These inconsistency between studies showing that insulin

suppresses the immune response and increases P. falciparum

prevalence (113, 115–117) versus those showing that

overexpression of Akt increases immunity and suppresses

Plasmodium establishment (13, 118) may result from differences in

IIS activity or expression pattern. Surachetpong et al. (116)

demonstrated that feeding human insulin to A. stephensi increased

ROS production and NOS synthesis but that the elevated NOS

synthesis was not associated with reduced P. falciparum prevalence

(116). Potentially, transgenic mosquitos that overexpress Akt in the

midgut or fat body may synthesize higher levels of NOS and ROS

than is produced in wildtype mosquitos fed insulin. This could be

tested in future studies. Additionally, insulin may have other

immune-suppressive effects on mosquito physiology independent

of Akt activation. More refined experimentation, including tissue-

specific transcriptomic contrasts between mosquitoes fed on insulin

compared to those overexpressing Akt could help elucidate the cause

of the differences between the studies.

Interestingly, insulin treatment of vertebrate macrophages

similarly suppresses inflammation and innate immunity regulated

by NF-kB transcription factors (123–126). For example, mouse

macrophages primed with insulin prior to immune challenge with

lipopolysaccharide (LPS) exhibited attenuated activity of Toll-like

Receptor 4, significantly reduced nuclear localization of NF-kB, and
reduced gene expression of Tumor Necrosis Factor alpha (TNFa)
(126). When insulin-primed cells were treated with a PI3K

inhibitor, insulin-mediated suppression of immune activity was

alleviated (126). These data further suggest that insulin-mediated

suppression of NF-kB activity is evolutionary conserved between

vertebrates and invertebrates.
TOR regulation of immune activity

Target of Rapamycin (TOR) is a nutrient sensing pathway that

is jointly regulated by IIS activity and the abundance of free amino

acids (Figure 1; 76, 127, 128). The Tsc1/Tsc2 complex negatively

regulates TOR, and is inhibited by Akt (76). Thus, Akt

phosphorylation activates the TOR complex to induce

downstream cellular processes that promote growth (76).

Inhibition of TOR can potentiate immunity in both mosquitos

and Drosophila (129–131). For example, inhibition of A. stephensi

TOR with rapamycin increased expression of genes like those

encoding the NF-kB transcription factor Rel2, antimicrobial

peptides Attacin and Cecropin, the complement-like protein

thioester-containing protein 1 (TEP1), and the CLIP domain

serine protease SPCLIP1 (130). TOR inhibition also reduced

infection prevalence of Plasmodium berghei in A. stephensi (130).

Similarly, suppressing TOR using rapamycin treatment in D.

melanogaster increased expression of the antimicrobial peptides

Diptericin and Metchnikowin (129), and also improved survival of

systemic infection against the Gram-negative bacterium

Pseudomonas aeruginosa (132).
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Suppression of TOR through genetic manipulation has similar

effects on immune function as rapamycin treatment (129, 132). For

example, both uninfected TOR mutants and ubiquitous

overexpression of the negative TOR regulator Tsc1/Tsc2 increased

Diptericin and Metchnikowin expression in D. melanogaster under

conditions of high protein availability (129). RagA is a GTPase that

positively stimulates TOR activity (133), and flies that expressed a

dominant negative form of RagA (which suppresses TOR activity)

exhibited increased survivorship after P. aeruginosa infection (132).

Rheb is a GTP-binding protein that positively regulates TOR

activity (134, 135). Overexpression of Rheb reduced expression of

the AMP genes Diptericin and Metchnikowin (129). Interestingly,

genetic suppression of TOR by overexpression of Tsc1/Tsc2

increased susceptibility to systemic infection with the human

pathogen Burkholderia cepacia, with flies exhibiting higher

mortality and pathogen burden (136). TOR associates with two

complexes, TOR complex 1 (TORC1) which is responsive to

rapamycin and Tsc1/Tsc2 activity, and the less-studied TOR

complex 2 (TORC2), which does not interact with Tsc1/Tsc2 or

rapamycin treatment (137). When TORC2 is genetically suppressed

via mutations lacking TORC2-specific components SIN1 and

Rictor, flies exhibit increased survivorship and lower pathogen

loads after B. cepacia (136). It is not clear to what extent TORC2

activity effects survivorship of other pathogens or its effects on

immune capacity such as AMP expression.

TOR activity has also been recently demonstrated to play a role

in D. melanogaster survival after oral infection. Deshpande et al.

(131) discovered that active TOR signaling is necessary to survive

an enteric infection with the entomopathogenic bacteria

Pseudomonas entomophila. Oral infection with P. entomophila

increases TOR activity and elevates expression of lipid synthesis

genes like fatty acid synthase 1 and Lipin. Suppression of TOR via

rapamycin treatment decreases infection survivorship without

affecting bacterial load or AMP gene transcription (131). The

higher mortality post-infection observed in flies with suppressed

TOR activity was associated with significant depletion of lipid

stores, specifically in the fat body and anterior region of the gut.

This reduction in lipid after infection is associated with decrease in

expression of lipid synthesis genes and an excessive loss in lipid

stores (131), and suggests that TOR can regulate lipid homeostasis

for tolerance of enteric infection.
Interactions between FOXO and active
immune response

Forkhead box proteins are a family of transcription factors

whose activity is suppressed by IIS (Figure 1) (138, 139). The

forkhead box-O (FOXO) protein in particular is involved in

various physiological functions including apoptosis, stress

responses and metabolic homeostasis (140–142), which are

conserved from invertebrates to vertebrates (139, 143–146).

Activated Akt phosphorylates FOXO, preventing FOXO from

localizing to the nucleus to drive transcription of target genes

including those that mobilize metabolic stores (76). FOXO is

responsive to varied stress stimuli including starvation, diapause,
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hypoxia, and infection (12, 147–151) and regulates processes like

lipolysis and autophagy in response to these stressors (149, 152).

Even in the absence of infection, starvation induces FOXO-

dependent expression of antimicrobial peptides in the gut, trachea,

fat body, and epidermis of D. melanogaster that is independent of

Toll and IMD signaling (153). Similarly, the transcription factor

Forkhead (FKH) drives AMP transcription in Drosophila in the

absence of infection as a function of inhibited TOR signaling, again

independent of Toll and IMD signaling (129). Starving larvae of the

silkworm Bombyx mori larvae also exhibit decreased Akt

phosphorylation and elevated expression of the AMP genes

CecropinB6, Attacin1 and Defensin B (154). AMP gene promoters

in varied insects frequently contain binding sites for forkhead-

family transcription factors (153–156). These may allow infection-

independent FKH/FOXO-regulated expression of these genes, and

there may also be synergism between forkhead family and NF-kB

family transcription factors. Future study should emphasize the

extent to which forkhead-family transcription factors synergize

with canonical immune signaling during an active infection.

Inhibition of FOXO results in increased nutrient storage and

activation of FOXO results in nutrient mobilization and release. As

could then be expected, D. melanogaster mutants for FOXO

experience reduced loss of glycogen and a partial rescue of

metabolic wasting compared to wildtype flies during a systemic

Mycobacterium marinum infection (12). FOXO-deficient flies have

increased survival of infection with M. marinum despite having

pathogen load similar to that of wildtype flies, which suggests that

the progressive loss of nutrient stores associated with activated

FOXO increases mortality.

FOXO additionally has also been implicated in contributing to

IMD-mediated effects on lipid metabolism in the absence of

infection. Molaei et al. (149) found Relish mutants to have lower

whole-body levels of triglyceride. Knockdown of Relish in the fat

body had no effect on triglyceride content under normal rearing

conditions, but when knockdown flies were fasted, they exhibited a

significant reduction in triglyceride levels that was not seen in

starved, wildtype flies (149). This drastic reduction in triglyceride

levels in a Relish knockdown background was also associated with

elevated expression of the lipase gene brummer (bmm). These

authors determined that the depletion of lipids in starved Relish-

deficient flies was due to FOXO-dependent regulation of bmm.

FOXO activates transcription of the lipase bmm (Figure 1) to

positively regulate lipolysis (157, 158). Reducing FOXO activity in

Relish mutants restores wildtype levels of fasting-dependent bmm

gene expression and triglyceride storage in the fat body (149). In flies

that are starved or fully fed, Relish can bind to the Bmm locus (149).

Relish has been suggested to modify histone acetylation during

starvation conditions demonstrated by enrichment of histone 3

lysine 9 acetylation (H3K9ac) in relish mutants at the site where

Relish binds the Bmm locus (149) Together, these data suggest that

Relish may antagonize FOXO-dependent regulation of lipolysis to

prevent rapid loss of lipids during starvation. Future experiments

could elucidate whether Relish-FOXO antagonism mediates the

shifts in lipid metabolism observed during infection (12, 23, 131).

FOXO also plays tissue-specific roles during oral infections.

During oral infection of D. melanogaster with Serratia marcescens,
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FOXO becomes activated and localized to the nucleus in gut

epithelial cells, where it contributes to infection-induced

expression of antimicrobial peptides (155). Even in the absence of

infection, overexpression of FOXO in D. melanogaster intestines

increases transcript levels of antimicrobial peptide genes Attacin,

Drosomycin, Diptericin, and Defensin in gut cells (155). FOXO

mutants experience reduced survivorship and higher bacteria load

in response to oral infection with S. marcescens compared to

wildtype, presumably as a consequence of the impaired AMP

expression (155).

Recent evidence in B. mori demonstrates a role for FOXO in

controlling infection by the orally-acquired baculovirus Bombyx

mori nuclear polyhedrosis virus (BmNPV). B. mori cell lines

infected with BmNPV exhibit increased phosphorylation of Akt

(159, 160) and reduced FOXO gene expression (17).

Phosphoenolpyruvate carboxykinase (PEPCK) is a downstream

target of FOXO that is known for its role in regulating

gluconeogenesis (161), and more recently for its antiviral role in

B. mori (17, 162). B. mori cells overexpressing PEPCK exhibited a

reduction in replication of BmNPV and elevated expression of the

autophagy-related protein ATG8 (162). PGRP2-2 negatively

regulates PTEN, which is itself a negative regulator of IIS (160).

Thus PGRP2-2 is a positive regulator of IIS, and consequently a

negative regulator of FOXO and PEPCK. PGRP2-2 knockdown and

FOXO overexpression reduce replication of BmNPV in a B. mori

cell line (160) and increase expression of PEPCK and autophagy-

related genes like ATG6, ATG7, and ATG8 (17). Pharmaceutical

inhibition of Akt phosphorylation in B. mori cells using a PI3K
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inhibitor also suppresses viral replication (160). These results

suggest that FOXO plays a critical role in this antiviral immune

response, and viruses like BmNPV can impact expression of its host

IIS to evade the immune response.

Evidence from D. melanogaster also suggests FOXO mediates

anti-viral immunity. Constitutive activation of FOXO can reduce

the viral load of the Cricket Paralysis virus in D. melanogaster S2

cells (148). FOXO mutants are also more susceptible to RNA virus

infections (148). FOXO regulates stress responses like autophagy

and apoptosis that can be critical for combatting viral infection,

providing a potential mechanism for FOXO-mediated resistance to

viruses. The anti-viral effects of FOXO have thus far been

predominantly evaluated in cell culture. Future experiments may

determine whether FOXO is involved in tissue-specific antiviral

responses and how those may impact host survivorship in vivo.
Future directions and considerations
in experimental design

In this review, we have discussed examples of known

interactions between innate immune and IIS pathways in the

model insect D. melanogaster as well as in insects of economic

and public health relevance like B. mori and A. stephensi. Figure 2

summarizes known interactions between Toll and IMD and IIS/

TOR and questions to consider for further investigation.

Supplementary Table 1 contains a list of published experiments in

D. melanogaster, A. stephensi, and B. mori that have evaluated how
FIGURE 2

Known signaling interactions between innate immune and IIS/TOR pathways. Arrows depict known activation while bars represent known
suppression in molecular interactions. Dashed bars represent known suppression between innate immune and IIS pathways, but the specific
molecular interaction is unknown. Text boxes with question marks indicate outstanding questions regarding these signaling interactions that could
be the study of future research.
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different pathogens and routes of infection (i.e., oral vs. systemic)

impact IIS/TOR activity and immunological phenotypes.

Supplementary Table 2 summarizes several published studies in

D. melanogaster that tested how manipulating the expression of

innate immune genes affects IIS activity and IIS-dependent

metabolism. The literature reviewed demonstrates a key role of

insulin signaling in responding to oral, parasitic, viral, and systemic

infections (12, 17, 19, 39, 115, 155). It also reveals critical differences

between tissues, pathogens, life stages, and routes of infection in

how insulin-immunity interactions play out. Different adaptive

strategies of IIS regulation could be deployed by the host

depending on the type of pathogenic infection. IIS and TOR

upregulation could promote tolerance of pathogens that stimulate

wasting of nutrient stores. For example, Akt and TOR are activated

by oral infection with P. entomophila, which promotes lipid

synthesis and alleviates infection-induced wasting to increase

survivorship (131). But for infections that may not pose a threat

of host wasting, suppression of IIS and promotion of FOXO-

dependent signaling to regulate lipid metabolism and

transcription of immune effectors may be more advantageous.

Akt activation is inhibited after oral infection with S. marcescens,

which activates FOXO to potentially help upregulate transcription

of AMPs that may act as a defense at the gut epithelium (155).

Potentially, FOXO-dependent regulation of AMPs in the gut

epithelial barrier may enable a localized response that is more

efficient than dumping antimicrobials into the gut lumen, where

they would be at lower effective concentrations and could cause

dysbiosis of the resident microbiota. Additionally, pathogens and

parasites may manipulate their host metabolism to gain nutritional

resources or may cause host metabolic changes as a consequence of

nutrient consumption. Future experiments are necessary to explore

to what extent infection-induced shifts to IIS activity serve as an

adapted host response to infection versus as a mechanism for

pathogens to exploit host physiology for their own gains.

Studies that make use of genetic manipulation have been critical

in advancing our understanding of how IIS and innate immune

activity interact. While infection studies in D. melanogaster IIS

mutants have shown varying effects on infection outcome (86, 102,

107), overexpression experiments driving Toll and IMD signaling in

the D. melanogaster fat body demonstrate an antagonistic response

of innate immune signaling on IIS activation (16, 19, 39, 82, 86).

Future experiments using tissue-specific or conditionally inducible

knockdowns and overexpressions (e.g. 163) will further reveal how

IIS affects immune function, including disentangling direct

antagonisms from pleiotropic developmental effects and

distinguishing tissue autonomy from interorgan communication.

Additionally, experiments coupling pharmacological intervention

and genetic manipulation of IIS could help elucidate the

contributions of TOR- and IIS- mediated effects on immunity.

IIS, metabolism, and innate immunity are interrelated in a feedback

network, and carefully conceived experiments will be required to

disentangle the mechanisms that connect them.

Genetic manipulation of insulin signaling in mosquitos has

revealed that activation of IIS can increase production of immune
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effectors, leading to reduced prevalence of Plasmodium infection

(117, 118, 122). Overexpression of negative regulators of IIS

similarly contributes to reduced Plasmodium infectivity (117). It is

thus possible that either upregulation or downregulation of IIS could

create unfavorable environments for parasite development,

increasing the potential for control of disease transmission via

genetic manipulation of the mosquito vector. However, direct

feeding of insulin to mosquitoes promotes Plasmodium falciparum

infection success, and the parasite can induce expression of ILPs to

suppress the mosquito immune response. The discrepancy between

direct feeding of insulin versus genetic manipulation of IIS activity in

mosquitos remains to be understood and brings an appropriate note

of caution in interpreting individual experiments. Despite these

nuances in experimental design, studies that demonstrate how

feeding insulin or treating mosquitos with pharmaceutical

inhibitors alter metabolic and immune function in mosquitos can

inform novel strategies to target for vector pest management.

Common themes of interaction between IIS and immunity have

emerged from the body of work described throughout this review.

Infection may stimulate or suppress IIS activity to initiate nutrient

mobilization in support of an immune response or to preserve

metabolic stores. Potentially, we could expect an adapted metabolic

response to support varying metabolic needs that could arise when a

host is challenged with diverse types of pathogens. Understanding

how IIS activity and the innate immune system interact within

insects is an exciting avenue of research with compelling foundation

but clearly much left to learn.
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