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Activation of an immune response is energetically costly and

excessive immune system activity can result in

immunopathology, yet a slow or insufficient immune response

carries the risk of pathogen establishment with consequent

pathology arising from the infection. Mathematical theory and

empirical data demonstrate that hosts balance the costs of

immunity against the risk of infection by closely regulating

immunological dynamics. An optimal immune system is rapidly

and robustly deployed against a true infectious threat and

rapidly deactivated once the threat has been controlled.

Genetic variation in the sensitivity of an immune system, as well

as in the activation and shutdown kinetics of host immune

responses, can contribute to the evolution of pathogen

virulence and host tolerance of infection. Improved

understanding of the adaptive forces that operate on immune

regulatory dynamics will clarify fundamental principles

governing the evolution and maintenance of innate immune

systems.
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Intuition suggests that pathogenic infection should be

met immediately with an overwhelming immune defense

that smothers the infection before it can become estab-

lished. In fact, one might envision an ever-active immune

system poised to suppress any pathogen that breaches

epithelial barriers. Yet most immune systems remain

fairly inactive under normal circumstances and are only

induced to high levels of activity after infection occurs.

The ubiquity of inducible immune reactions implies that
www.sciencedirect.com 
the fully active state is costly, and that the cost is not

worth bearing in the absence of dangerous infection. The

costs are real and manifest in terms of energetic demands

and risk of autoimmune damage. Yet the alternative

strategy of deactivating the immune system in the

absence of infection carries a risk of its own, providing

the pathogen with time to become established while

immune defense is being ramped up. The lag time to

full activation of an inducible defense therefore sets up a

high-stakes race between the host and pathogen, and the

host must balance risk against costs in assessing what

threats warrant a response and how strongly to react.

Insects and other non-vertebrates rely on innate immune

systems, while vertebrates supplement their innate

immunity with highly specific, antibody-mediated

acquired immune systems. In innate antimicrobial

immune responses, a eukaryotic host recognizes con-

served molecular structures characteristic of microbes

but absent from eukaryotes, including b-glucans (fungal

cell walls), peptidoglycan and lipopolysaccharides (bac-

terial cell walls and membranes), and components of

flagella (bacteria). These stimulatory molecules are some-

times called Microbe-Associated Molecular Patterns, or

MAMPs [1�]. Recognition of parasitic infection stimu-

lates an induced response, which in insects can be com-

posed of phagocytosis of small pathogens by macrophage-

like cells, encapsulation of large pathogens within multi-

layered sheaths of host cells, and production of cytotoxic

oxidative free radicals and antimicrobial peptides to kill

pathogens [2,3�]. Each of these defense mechanisms may

come at considerable cost. Phagocytes are finite in num-

ber and cannot always be quickly recycled [3�]. Forming a

multicellular capsule around a pathogen requires substan-

tial investment into hematopoiesis [4]. Reactive oxygen

species are undiscriminating and can do damage to host

tissues as well as to pathogens [5,6,7��]. Antimicrobial

peptides may be produced at levels as high as 100 mmol in

insect hemolymph [8], posing a substantial transcriptional

and translational burden on host cells. The costs of an

immune response in terms of energetic expenditure and

self-damage can be so great that, in some cases, the

pathology associated with an infection is due as much

to the host response as it is to direct virulence of the

pathogen [9].

How, then, should a host optimize the immune response?

Rapid activation is critical and small differences in the

speed or intensity of immune induction over the first few

hours of infection can make a life-or-death difference in
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infection outcome [10,11��, Lafont et al. bioRxiv doi:

https://doi.org/10.1101/2021.10.19.464998], but the costs

of an overactive response could be substantial. The host

must react quickly and intensely to a true threat without

being hypersensitive to non-threats such as beneficial

microbes and benign commensals. Since even non-path-

ogenic microbes present MAMPs, simple recognition that

a microbe is present is too low of a threshold for inducing

full immune activation. Instead, a more discriminating

strategy is to couple surveillance for microbes with sur-

veillance for indicators of cellular damage such as intra-

cellular molecules in the extracellular space (sometimes

called Damage Associated Molecular Patterns; DAMPs)

[12,13] or for common pathogen virulence mechanisms

such as toxin production or protease secretion [14,15,16�].
That a discriminating immune system should mount a

full response only in the joint presence of both DAMPs

and MAMPs is the central premise of Maztinger’s Danger

Model [17]. Extending Matzinger’s logic and incorporat-

ing the costs of immunity, Lazzaro and Rolff subse-

quently argued that the healthiest host need not

completely eradicate a pathogen but need only reduce

pathogen burden below a threshold where the cost of

damage done by the pathogen is less than would be the

cost of an immune reaction to control the infection [18].

The residual pathogen burden would be tolerated by the

host. Those authors drew a parallel to the economic injury

level as applied in agriculture [19], which is the threshold

at which herbicide or insecticide application is warranted

because the cost of damage done by an agricultural pest

exceeds the cost of implementing control. Similarly, a

well-tuned immune system might balance risks and costs

by activating a response only when both MAMPs and

danger signals are jointly present, and only when the

potential damage from the pathogen is greater than the

energetic and immunopathological cost of defense.

Of course, it is quite a lot to ask that any system should be

able to anticipate future costs of unchecked infection and

titrate exactly the correct amount of immunity for control.

In practice, infection presents a combination of stimuli,

some of which may be only indirectly related to potential

virulence or toxicity of the pathogen, and the immune

system must respond to those stimuli as they exist in

the moment as opposed to what they might represent for

the future. While activating immunity certainly comes

with costs, failing to adequately suppress a pathogenic

infection would cost much more. In an early theoretical

model, Frank showed that hosts achieve highest fitness

when pathogenic infection is rapidly detected and an

intense response is mounted to guarantee control of

infection, provided the response is quickly shut down

after the infection has been cleared to limit immunopa-

thology [20]. Subsequent work by Urban et al. [21] dem-

onstrated that the optimal host strategy is to err in the

direction of excess immune activation to ensure suppres-

sion of the pathogen, but again emphasized the
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importance of rapid shutdown after the infection has

been cleared. Interestingly, however, the fitness surface

in the Frank [20] model was fairly flat and the Urban et al.
model [21] yielded a flat shoulder to the fitness surface

beyond the point where immune activity was adequate

for control of infection. These theoretical findings sug-

gested that natural populations might harbor substantial

genetic variability for immune regulatory kinetics as long

as activation exceeds some minimum threshold. Consis-

tent with these models, natural insect populations harbor

considerable genetic variation for the quantitative degree

of immune gene expression in response to infection

challenge [e.g. Refs. 22,23��,24�]. However, more empiri-

cal work is necessary to determine the degree to which

that variability stems specifically from polymorphism in

surveillance sensitivity, intensity of activation, and rate of

shutdown, as well as how such variability relates to

pathogen control and host fitness.

The theoretical prediction that potential threats should

elicit a rapid and overwhelming initial response is well

supported by data. In insects, a sterile injury is sufficient

to induce a transient prophylactic antimicrobial response

even in the absence of microbes or MAMPs [e.g. Ref. 25].

However, the presence of microbes is required to sustain

the response beyond a few hours. Insect immune reac-

tions to sterile injury or legitimate bacterial infection

include several-hundred-fold increase in expression of

genes encoding a broad suite of antimicrobial peptides

[e.g. Refs. 25–28,29�]. Surprisingly, however, most of the

antimicrobial peptides produced seem to have no effect

in controlling any given infection [30��]. Thus, it would

appear that instead of attempting to restrict expression to

the specific peptide(s) that are appropriate for controlling

a given infection, insects abundantly express an entire

catalog of peptides so that a few functionally effective

peptides will be included among them. This may be due

to lack of host ability to rapidly and accurately discrimi-

nate among infections, but the consequence could be that

an unnecessarily high cost of immune activation is borne

in order to ensure that infection is controlled.

The prediction of robust negative regulation is also well

supported empirically. A ubiquitous insect defense mech-

anism is production of cytotoxic reactive oxygen species

(ROS) from quinone and semiquinone intermediates via

phenoloxidase. This is an extremely rapid response,

activated in minutes by protease cascades that are much

faster than responses that depend on transcription and

translation. However, simultaneously, ROS detoxifiers

like superoxide dismutase and catalase are produced to

defuse the ROS even as they are being generated [3�;
Figure 1]. Similarly, the expression of genes encoding

antimicrobial peptides is triggered by activation of two

signaling pathways, the Toll and Imd pathways, which are

almost completely conserved across insects. These two

pathways activate expression of proteins that dampen flux
www.sciencedirect.com
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Figure 1

1

2
3

Im
m

un
ity

M
ic

ro
be

s
D

am
ag

e
Time

(a) (b)

(c)

(d)

slow 

fast

chronic

clearance

mic > imm

im
m

 >
 m

ic

translation

MAMPs

transcription

Current Opinion in Insect Science 

Regulation of immune signaling during infection. Negative regulators of immune responses (a) can degrade MAMPs and DAMPs to prevent signal

transduction from immune receptors (1, for example, peptidoglycan-recognition proteins with amidase activity), they can inhibit or degrade

signaling proteins and transcription factors that propagate those signals (2, for example, the proteins Cactus and PIRK), or they can modify the

activity of the resulting effector response (3, for example, antioxidants that detoxify immune-generated ROS). The net effect of these regulators is

to slow the induction of an immune response and to accelerate its decay. Lower activity of a negative regulator can result in a prolonged immune

response ((b), gray line) relative to a response that returns more quickly to baseline (black line). While reducing negative regulation on the system

could potentially result in faster activation and/or more complete clearance of microbes compared to a dampened reaction that might allow

chronic persistence of an infection (c), a host with more aggressive immunity could suffer a net higher damage ((d), gray dashed line, where

immunopathology exceeds the damaged done by infection) compared to a host whose immune system is under moderate negative regulation (d,

black line, where immunopathology is reduced but damage due to chronic infection continues to accumulate) or one whose immune system is

strongly regulated so that immunopathological damage is lower than direct damage from the infection (d, dotted gray line).
through the pathways [1�; Figure 1], resulting in a nega-

tive feedback loop that shuts down the immune system

once the activating stimulus is gone. Furthermore, the

Toll and Imd pathways upregulate production of proteins

that degrade immunostimulatory MAMPs [31,32;

Figure 1], actively removing the stimulus to prevent

sustained signaling in response to microbes that have

already been killed or in response to benign commensals

[33]. Theory predicts [34] that shutdown kinetics should

be especially rapid when the cost of immune deployment

is high, as in the case of antimicrobial peptide production,

or when there is a high risk of immunopathology, as is the

case with ROS production. High levels of immunopathol-

ogy can even shift the fitness balance toward sustaining

chronic infections, provided the pathology of the chronic

infection is less than the pathology associated with a level

of immunity required to eradicate it [34].
www.sciencedirect.com 
Genetic variation in sensitivity to immune stimulation

and consequent immunopathology could contribute to

among-individual variation in tolerance of infection,

where tolerance is defined as the ability to sustain health

and fitness despite a pathogen burden [35]. Tolerance can

be empirically measured as the relationship between

health and parasite number, and variation in tolerance

can be determined at the population level by measuring

both host health and pathogen burden in a sample of

individuals or genotypes drawn from the population.

Immune sensitivity is determined by several distinct

variables, including the number of microbes needed to

cross activation thresholds [36], the strength of induction

per microbe [23��], and the kinetics of negative regulators

relative to positive ones [37]. Genetic variation in any of

these traits could lead to variability in the capacity to

control infection, as well as to variation in
Current Opinion in Insect Science 2022, 50:100874
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immunopathology and tolerance of infection. Insects are

especially amenable to studying variation in tolerance

because they often can be maintained as genetically

homogeneous strains, which can be used for replicated

measure of host health over an experimental range of

pathogen burdens. Such studies have revealed consider-

able naturally occurring genetic variation in tolerance of

microbial infection [e.g. Refs. 38–41,42�]. This observa-

tion is qualitatively consistent with the theoretical

predictions of Frank [20] and Urban et al. [21] that

populations may be genetically variable for immune

activation and shutdown kinetics, and indeed a pair of

recent articles recently showed that negative regulators of

the Drosophila immune system promote tolerance of

infection [Prakash et al. bioRxiv doi: 10.1101/

2021.09.23.461574, Prakash et al. bioRxiv doi: 10.1101/

2021.09.23.461578]. Future research should additionally

test the relationship between tolerance and sensitivity to

immune activation, while recognizing that a vast number

of physiological processes could contribute to tolerance

and that the determinants of genetic variation in tolerance

are unlikely to lie solely in the immune system [28,40,43].

Optimal immune reactivity may vary demographically.

Metcalf et al. [44] noted that long-lived hosts might be

expected to evolve reduced sensitivity to infection in

order to minimize immunopathology accumulated over a

lifetime. This is superficially contrary to an intuitive

expectation that long-lived hosts should be more immu-

nologically vigilant because of cumulative risk of expo-

sure, but is supported by widespread observation that

overactivation of immune systems early in life results in

decreased longevity [6,45,46]. Instead, long-lived hosts

could be predicted to evolve forms of acquired immuno-

logical memory and immune plasticity to deal with rap-

idly evolving pathogens [47–49]. This hypothesis could

be tested by contrasting the immune systems of long-

lived and short-lived invertebrates.

When immunopathology is a major determinant of overall

pathology (in contrast to when virtually all pathology

arises from parasite exploitation of the host), immunopa-

thology can become an indirect driver of pathogen viru-

lence evolution [50]. For the host, the cost of infection is

the cumulative combination of pathology arising from

both pathogen virulence and the host’s own immune

reactions (Figure 1). Direct selection on the pathogen

is always for increased transmission, but host immunopa-

thology can become a factor in transmission-virulence

tradeoffs for the pathogen. When pathogen virulence

mechanisms stimulate increased immunopathology to

the point of decreasing transmission (e.g. because of early

host death), there can be selective pressure on pathogens

to become both less virulent and less immunostimulatory,

effectively increasing host tolerance of infection [51,52].

Reduced immunostimulation may be less likely to evolve

when transmission and immunopathology are positively
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correlated (e.g. when host symptoms mediate transmis-

sion). Similarly, host evolution of tolerance mechanisms

that mitigate pathogen-induced damage without directly

attacking the pathogen itself (such as wound repair and

neutralization of virulence factors) can facilitate pathogen

evolution of escalated virulence if the virulence mecha-

nisms directly promote transmission [53].

While both theoretical and empirical studies have begun

to explore the challenge of optimizing immune reactivity

to sufficiently control infection while minimizing immu-

nopathology, much work remains to be done. How the

host might achieve this optimization given limited and

imperfect information about potential virulence in the

early stages of an infection is a question ripe for theoreti-

cal exploration. Mechanistically disentangling the coun-

terbalancing forces of immune induction versus active

signal decay and system shutdown is a top priority,

including comparative evaluation of how direct versus

indirect negative regulation impacts infection dynamics.

So, too, is determining the health and fitness conse-

quences of drifting away from immunological optimality.

Because of their experimental tractability, insect systems

are ideal for performing this work. Insects are regularly

observed to tolerate low-level chronic infections instead

of immunologically eradicating pathogens [e.g. Refs.

38,41,54,55], and the importance of this for the evolution

of pathogen virulence and transmission should be

explored theoretically. Achieving better and more com-

plete understanding of the proximate and evolutionary

consequences of variation in the regulation of inducible

immune responses will clarify fundamental principles

driving the evolution and maintenance of innate immune

systems.
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