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Chapter 1

Characterization of Insect Immune Systems  
from Genomic Data

Robert M. Waterhouse, Brian P. Lazzaro, and Timothy B. Sackton

Abstract

Insects face a multitude of threats from the pathogens and parasites they encounter over their life cycles, 
and they use robust immune systems to defend themselves. This chapter provides a tutorial for the identi-
fication and annotation of genes that comprise the immune system from newly sequenced insect genomes. 
Insect immune responses are orchestrated by the products of a suite of genes responsible for pathogen 
recognition, signal transduction, and pathogen killing. Many of the genes and proteins underlying these 
processes can be identified based on sequence homology with related species that have been immunologi-
cally characterized. Additional components of the immune response can be identified by transcriptomic 
analyses to detect genes whose expression changes in response to infection stimulus. Application of our 
step-by-step protocols for these complementary approaches enables the characterization of insect immune 
systems from genomic data.

Key words Immunity, Infection, Genome annotation, Gene families, Comparative genomics, 
Transcriptomics

1 Introduction

A major element of genome sequencing projects is the identifica-
tion and annotation of the genes expected to underlie key physio-
logical processes. The initial identification of these genes from 
genomic data enables subsequent functional experimentation and 
comparative genomic analyses to understand the evolutionary 
forces that drive establishment, maintenance, and diversification of 
these processes. In this chapter, we describe (1) a general frame-
work for using sequence homology searches and (2) a detailed 
infection protocol for transcriptomic analyses to identify and anno-
tate candidate immune system genes in newly sequenced insect 
genomes.

The identification of genes in newly sequenced genomes is 
typically initiated with computational searches for homologs of 
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genes that have been characterized in other species. This approach 
works well for genes that make up an evolutionarily conserved, 
canonical immune repertoire, such as those established over two 
decades of functional genetic research on the model insect 
Drosophila melanogaster [1–6] and more recent work in non-model 
insects [7–16]. The identification of novel genes or those with no 
prior ascribed functional role in immunity, however, requires 
experimental data to be coupled with the computational analyses. 
Identifying these infection-responsive genes is facilitated by the 
fact that the expression of many immune genes is induced by infec-
tious challenge. This means that transcriptomic analysis of changes 
in gene expression after infection can be used to support inferences 
from homology searches and to suggest additional, sometimes 
novel, components of the immune system.

Homology searches are excellent for identifying conserved 
genes and protein domains that comprise various components of 
the innate immune system. This includes most immune gene fami-
lies and signaling pathway members. The presence of core recogni-
tion, signaling and modulation, and effector components of the 
immune system indicates functional conservation across taxa, while 
notable absences such as the apparent degradation of the IMD 
pathway in pea aphids [10] can suggest possible rewiring of the 
system. Computational searches will identify candidate immune- 
related genes from the full set of genes predicted by whole genome 
annotation pipelines. Manual curation may be required to validate 
some candidates or to confirm cases of apparent losses of otherwise 
widely conserved genes. Homology searches also help to detect 
and quantify expansions and contractions of multi-gene families 
that vary in copy number across insects, such as genes encoding 
peptidoglycan recognition proteins (PGRPs) and members of the 
phenoloxidase cascade (PPOs). Unlike for the generally single- 
copy signaling pathway genes, defining clear orthologous relation-
ships can be difficult for such multi-gene families, depending on 
the age of the gene duplications and the phylogenetic distance 
between the species being compared. Nevertheless, the variable 
numbers of such immunity genes can sometimes be interpreted as 
indicative of the natural selective and epidemiological pressures on 
the insect being studied [7, 17, 18].

Homology searches are invaluable for identifying most canoni-
cal immune genes. However, genes that have newly acquired 
immune functions, or evolutionarily novel genes with roles in 
immunity, will not be identified through homology searches using 
known immune gene sequences. Thus homology searches can be 
complemented with transcriptomic analyses to identify sets of 
genes whose expression levels are responsive to infection, but that 
are not normally considered part of the canonical immune system. 
In such analyses, the insect in question is challenged with a relevant 
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infection stimulus and RNA is extracted either from the whole 
insect or from immunologically relevant tissues. The gene 
 expression profiles of challenged insects can then be compared to 
the expression profiles of naïve insects, enabling identification of 
genes whose expression is induced or repressed by infection (e.g., 
[19, 20]). Transcriptomic analysis is especially powerful for identi-
fying effector genes such as those encoding antimicrobial peptides 
(AMPs). These may be unique to specific groups of insects and the 
genes are often so short that they fail to be detected by computa-
tional gene-finding algorithms. However, they are often massively 
transcriptionally induced upon infection. Thus, transcriptomic 
analysis can be a powerful approach to identify effectors that would 
be missed by other methods (reviewed in [21]). While AMPs and 
other effectors have direct roles in immunity, many other differen-
tially expressed genes may play indirect roles, and as such they do 
not form part of the “immune system” by any canonical definition. 
For example, infection often causes activation of generic stress 
response genes [22, 23] and a transcriptional signature of repres-
sion of basal metabolism [24, 25]. In some cases, these transcrip-
tional responses may promote host survival, but in other cases they 
may even represent deleterious consequences of infection. 
Therefore caution must be taken and it should not be assumed that 
a gene is part of the immune system solely because its expression 
level changes after challenge.

Homology searches and transcriptomic analyses are comple-
mentary approaches to characterize genes that play a role in the 
insect immune system from newly sequenced genomes (henceforth 
referred to as the “target” or “focal” species). Sequence homology 
searching is powerful and allows for the identification of genes 
with conserved immune-related protein domains, including genes 
whose expression patterns do not change substantially in response 
to infections. Transcriptomic analyses have the advantage that they 
can identify novel infection-responsive genes that have not been 
previously characterized in other species. In this chapter, we detail 
a practical workflow for applying these two approaches in parallel 
to characterize the immune system of an insect with a newly 
sequenced genome.

2 Methods

Characterizing the canonical innate immune gene repertoire in 
newly sequenced genomes follows four main steps, presented in 
Fig.  1. The first is to compile a comprehensive list of immune- 
related genes and their protein sequences from species that have 
already been characterized (henceforth referred to as the “refer-
ence” species). These sequences are then used to search the 

2.1 Identification 
of Canonical Innate 
Immunity Genes
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genomes and gene sets (the complete set of predicted genes for a 
given genome) for putative homologs and characteristic protein 
domains. The candidate gene models can then be inspected and 
manually curated to ensure that they are correct and complete. 
Finally, phylogenetic analyses to trace the evolutionary histories of 
each gene family allow for the delineation of orthologs and para-
logs and the confident characterization of a new set of canonical 
immune genes.

 1. The comparative approach to identifying immune-related 
genes in newly sequenced genomes relies on comparisons with 
previously characterized sets of immunity genes in other species. 
While newer investigations of immune systems across diverse 

2.1.1 Compiling Sets 
of Reference Sequences

Fig. 1 Workflow of steps required for canonical immune gene identification. Protein sequences of immune-
related genes from selected reference species are first collected based on the current knowledge of insect 
innate immunity. These are then used as reference query sequences and sequence hidden Markov model 
(HMM) profiles for homology searches of the gene set (protein sequences) of the target species to be investi-
gated. Complementary protein-domain searches are used to identify genes that contain domains in common 
with the reference immunity genes. Results from the sequence and domain searches are then used to priori-
tize the inspection of the candidate immunity genes and curate their predicted gene models to ensure they are 
as complete and accurate as possible. This will benefit from the results from homology searches of the refer-
ence query sequences against the genome assembly as well-aligned RNA sequencing (RNA- seq) reads from 
the target species. Combined phylogenetic analysis of homologous reference and target candidate sequences 
to build gene trees then allows for the confirmation or rejection of the candidate immune-related genes and 
the characterization of their orthologous or paralogous relationships
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insect taxa have begun to reveal novelties in different species, 
a great deal of the collective knowledge of the canonical insect 
innate immune gene repertoire nevertheless still derives from 
studies conducted on D. melanogaster (see Note 1). To start 
compiling sets of reference immune gene sequences, you will 
first need to (1) define the scope of your study by deciding 
which immune-related pathways and gene families to include 
and (2) select appropriate species from which to source the 
reference immune protein sequences.

 2. Defining the scope of the immune gene repertoire to be exam-
ined requires an overview of the current understanding of the 
canonical insect innate immune system. The principal compo-
nents of an immune response must include proteins responsi-
ble for recognition of pathogens, signal transduction once a 
pathogen has been recognized, and effector proteins and 
biomolecules that eliminate the pathogen (Table 1). A core set 

Table 1 
The principal components of the canonical insect innate immune gene repertoire

Gene family or signaling pathway Brief description

IMD pathway The immune deficiency pathway is characterized by 
peptidoglycan recognition protein receptors, intracellular 
signal transducers and modulators, and the NF-κB 
transcription factor relish

Toll pathway The intracellular components of Toll pathway signaling are 
homologous to the Toll-like receptor innate immune pathway 
in mammals, culminating in activation of the NF-κB 
transcription factors dorsal and DIF in Drosophila

JAK/STAT pathway The JAnus kinase protein (JAK) and the signal transducer and 
activator of transcription (STAT) are two core components of 
the JAK/STAT pathway, which is involved in cellular responses 
to stress or injury

RNAi pathway RNA interference protects against viral infections employing 
dicer and Argonaute proteins as well as helicases to identify 
and destroy exogenous double- stranded RNAs

Antimicrobial peptides AMPs are the classical effector molecules of innate immunity; 
they include defensins, cecropins, and attacins that are 
involved in bacterial killing by disrupting their membranes

Caspases Cysteine-aspartic proteases are involved in immune signaling 
cascades and apoptosis

CLIP-domain serine proteases Several CLIP proteases have roles as activators or modulators of 
immune signaling cascades

C-type lectins CTLs are carbohydrate- binding proteins with roles in pathogen 
opsonization, encapsulation, and melanization, as well as 
immune signaling cascades

(continued)
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Table 1
(continued)

Gene family or signaling pathway Brief description

Fibrinogen-related proteins FREPs (also known as FBNs) are a family of pattern recognition 
receptors with homology to the C terminus of the fibrinogen 
β- and γ-chains

Galectins GALEs bind specifically to β-galactoside sugars and can function 
as pattern recognition receptors in innate immunity

Gram-negative binding proteins GNBPs (or β-1,3-glucan- binding proteins, BGBPs) are a family 
of carbohydrate-binding pattern recognition receptors

Inhibitors of apoptosis IAPs are important in antiviral responses and are involved in 
regulating immune signaling and suppressing apoptotic cell 
death

Lysozymes LYSs are key effector enzymes that hydrolyze peptidoglycans 
present in the cell walls of many bacteria, causing cell lysis

MD-2-like proteins MLs, also known as Niemann-pick type C-2 proteins, possess 
myeloid-differentiation- 2-related lipid- recognition domains 
involved in recognizing lipopolysaccharide

Nimrods NIMs have been shown to bind bacteria leading to their 
phagocytosis by hemocytes

Peptidoglycan recognition proteins PGRPs are pattern recognition receptors capable of recognizing 
the peptidoglycan from bacterial cell walls

Prophenoloxidases PPOs are key enzymes in the melanization cascade that helps to 
kill invading pathogens and is important for wound healing

Peroxidases PRDXs are enzymes involved in the metabolism of reactive 
oxygen species (ROS) that are toxic to pathogens

Scavenger receptors SCRs are made up of different classes that function as pattern 
recognition receptors for a broad range of ligands including 
from pathogens

Superoxide dismutases SODs are antioxidant enzymes involved in the metabolism of 
toxic superoxide into oxygen or hydrogen peroxide

Spaetzle-like proteins The cleavage of Spaetzle results in binding of the product to the 
toll receptor and subsequent activation of the toll pathway; 
SPZs contain a cystine knot domain

Serine protease inhibitors Protease inhibition by serpins, or SRPNs, modulates many 
signaling cascades; they act as suicide substrates to inhibit their 
target proteases

Thioester-containing proteins TEPs are related to vertebrate complement factors and 
α2-macroglobulin protease inhibitors; their activation through 
proteolytic cleavage leads to phagocytosis or killing of 
pathogens
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of key genes and pathways has been characterized through 
experimental research in different insect systems and shown to be 
widely conserved across divergent insect species (see Note 2). 
These can serve as the initial basis for homology searches, 
although novel genes should also be expected to emerge from 
each new study system. A streamlined scope would normally 
first focus on (1) canonical families of pathogen recognition 
receptors such as peptidoglycan recognition proteins (PGRPs) 
and Gram- negative bacteria-binding proteins (GNBPs, also 
known as beta-1,3-glucan-binding proteins); (2) the core 
members of the three main immune signaling cascades, the 
Toll, IMD, and JAK/STAT pathways; and (3) effectors such 
as antimicrobial peptides (AMPs) and lysozymes (LYSs) whose 
expression is generally upregulated upon stimulation of these 
pathways. Additional core processes include immune responses 
such as RNA interference (RNAi), phagocytosis, apoptosis 
and autophagy, the defensive production of reactive oxygen 
species (ROS), and melanization reactions [26, 27]. 
Broadening the scope of the study further would normally 
include (1) additional gene families with members implicated 
in pathogen recognition and/or immune response activation 
such as C-type lectins (CTLs), thioester-containing proteins 
(TEPs), or scavenger receptors (SCRs) and (2) genes respon-
sible for the positive or negative regulation of core members of 
the main signaling pathways and cascade modulation. 
Ultimately, the scope of the study will be determined by size 
of the research team working on the project and the questions 
of particular biological interest for the target species.

 3. The selection of appropriate reference species should be 
guided by published comparative characterizations of other 
insect genomes such as those listed in Table 2. Selecting sev-
eral reference species will allow for better consistency checks, 
e.g., do searches using one reference species produce similar 
results as using another reference species? Comparisons 
between insects from the same order are the most useful, as 
the lower sequence divergence between more closely related 
species improves the success of sequence homology searches. 
Additionally, gene family composition will generally be more 
similar between closely related species, with fewer gene gains 
or losses since their last common ancestor. Data from the ref-
erence species should be public, versioned, and recognized by 
their respective communities as the official assemblies and 
gene sets, to facilitate both repeatability of the analysis and 
ease of data acquisition. Data retrieval and querying will be 
further facilitated if the selected reference species are already 
hosted by an online genome browser resource such as the 
Bioinformatics Platform for Agroecosystem Arthropods [28], 
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Ensembl Metazoa [29], FlyBase [30], Hymenoptera Genome 
Database [31], i5k at the National Agricultural Library [32], 
the National Center for Biotechnology Information [33], or 
VectorBase [34].

 4. Having defined the scope and selected the reference species, 
you can now proceed with compiling your sets of reference 
immune-related protein sequences. Published studies such as 
those presented in Table 2 usually include lists of gene and/or 
protein identifiers of the immune genes that were identified. 
Use these to extract the corresponding sequences from the 
complete gene sets for each species. As these studies are effec-
tively snapshots of the available data at the time of publication, 

Table 2 
Examples of comparative studies of the canonical insect innate immune repertoire

Focal species Comparison species Breadth of study Reference

Six Glossina Musca domestica
Drosophila melanogaster

Rec, Sig, Mod, Eff Attardo et al. [35]

Manduca sexta Bombyx mori Serine protease inhibitors 
(SRPNs)

Li et al. [36]

Aedes aegypti Aedes albopictus
Anopheles gambiae
Culex quinquefasciatus

C-type lectins (CTLs) Adelman and Myles 
[37]

Six Glossina Several other dipterans
Outgroup blood-feeding 

hemipterans

Thioester-containing 
proteins (TEPs)

Matetovici and Van 
Den Abbeele [38]

Musca domestica Glossina morsitans
Five mosquitoes
Seven Drosophila

Rec, Sig, Mod, Eff Sackton et al. [7]

Pteromalus 
puparum

Aedes aegypti
Anopheles gambiae
Apis mellifera
Bombyx mori
Drosophila melanogaster
Manduca sexta

Serine protease inhibitors 
(SRPNs)

Yang et al. [39]

Bombus impatiens
Bombus terrestris

Apis florea
Apis mellifera
Megachile rotundata
Nasonia vitripennis
Tribolium castaneum
Drosophila melanogaster
Anopheles gambiae

Rec, Sig, Mod, Eff Barribeau et al. [8]

Anopheles gambiae Twenty other mosquitoes
Drosophila melanogaster

Rec, Sig, Mod, Eff Neafsey et al. [40]

(continued)
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Table 2
(continued)

Focal species Comparison species Breadth of study Reference

Zootermopsis 
nevadensis

Diptera
Lepidoptera
Coleoptera
Hymenoptera

Rec, Sig, Mod, Eff Terrapon et al. [41]

Nasonia vitripennis Drosophila melanogaster
Anopheles gambiae
Apis mellifera
Acyrthosiphon pisum

Rec, Sig, Mod, Eff Brucker et al. [42]

Aedes aegypti Anopheles gambiae
Culex quinquefasciatus
Twelve Drosophila

Caspases (CASPs) Bryant et al. [43]

Culex 
quinquefasciatus

Anopheles gambiae
Aedes aegypti
Drosophila melanogaster

Rec, Sig, Mod, Eff Bartholomay et al. 
[9]

Acyrthosiphon pisum Drosophila melanogaster
Anopheles gambiae
Tribolium castaneum
Apis mellifera
Pediculus humanus

Rec, Sig, Mod, Eff Gerardo et al. [10]

Anopheles gambiae Culex quinquefasciatus
Aedes aegypti

Mosquito leucine-rich 
repeat immune proteins 
(LRIMs)

Waterhouse et al. 
[44]

Bombyx mori Drosophila melanogaster
Anopheles gambiae
Aedes aegypti
Apis mellifera
Tribolium castaneum

Serine protease inhibitors 
(SRPNs)

Zou et al. [45]

Bombyx mori Drosophila melanogaster
Anopheles gambiae
Apis mellifera
Tribolium castaneum

Rec, Sig, Mod, Eff Tanaka et al. [11]

Drosophila 
melanogaster

Eleven other Drosophila Rec, Sig, Mod, Eff Sackton et al. [12]

Aedes aegypti Anopheles gambiae
Culex quinquefasciatus
Drosophila melanogaster

Rec, Sig, Mod, Eff Waterhouse et al. 
[13]

Tribolium 
castaneum

Drosophila melanogaster
Anopheles gambiae
Apis mellifera

Rec, Sig, Mod, Eff Zou et al. [14]

Apis mellifera Drosophila melanogaster
Anopheles gambiae

Rec, Sig, Mod, Eff Evans et al. [15]

Anopheles gambiae Drosophila melanogaster Rec, Sig, Mod, Eff Christophides et al. 
[16]

Gene categories: Rec recognition, Sig signaling, Mod modulation, Eff effectors

Insect Immunogenomics
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they should be treated as starting points for compiling your 
own sets of reference sequences. By subsequently curating 
these initial sets, you will be able to match them with the most 
up-to- date information, both with respect to the latest genome 
assembly versions and their corresponding gene sets, as well as 
to incorporate new discoveries or refinements described in the 
current literature. One advantage of having selected reference 
species with publicly browsable genomic resources is that it 
allows you to perform online queries with gene identifiers or 
names from the literature in addition to the sequence homol-
ogy searches described below. Typically, the collected refer-
ence sequences will be the translated protein products of each 
transcript comprising each gene (see Note 3), stored in plain-
text files in FASTA format. When alternative splicing produces 
protein products that differ substantially (e.g., a single PGRP 
gene that can encode one, two, or three distinct PGRP 
domains), it is important to collect all predicted transcripts. 
This will allow you to assess whether the target species genome 
also encodes equivalent transcripts and whether gains or losses 
of alternative transcripts have occurred.

 1. The purpose of compiling a comprehensive and up-to-date set 
of reference sequences is to then use these as query sequences 
to search the gene set of the target species being investigated. 
Your searches should start with a global comparison (see Note 4) 
of the compiled sets of reference sequences against the target 
species’ gene set. Use the BLASTp option of the Basic Local 
Alignment Search Tool (BLAST) suite [46] to identify the 
most significant matches (i.e., the highest bitscores and the 
lowest expectation values) to the reference protein sequences 
in the predicted target proteome (the translations of the pre-
dicted gene set). The National Center for Biotechnology 
Information (NCBI) BLAST+ user manual (https://www.
ncbi.nlm.nih.gov/books/NBK279690) provides detailed 
installation and usage instructions, and example commands 
(in monospace type following $ symbols) for the required 
steps are provided here with default parameters:

Format the protein sequences from your gene set into a 
searchable database:
$ makeblastdb -in geneset_proteins.fasta 
-dbtype prot -out proteinsDB

Search your compiled reference protein sequences against 
the gene set:
$ blastp -query reference_proteins.fasta -db 
proteinsDB -out referencesVSgeneset.txt

Produce tabular results of searching your compiled refer-
ence protein sequences against the gene set:

2.1.2 Searching Gene 
Sets for Candidate 
Immunity Genes

Robert M. Waterhouse et al.
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$ blastp -query reference_proteins.fasta -db 
proteinsDB -outfmt 6 -out referencesVSgen-
esetTAB.txt

The BLASTp search will provide ranked lists of putative 
homologs of each query sequence from the reference proteins, 
thereby identifying the predicted proteins encoded in the tar-
get genome that most closely resemble the reference sets of 
immunity proteins. You should next run reciprocal BLASTp 
searches using the top-scoring proteins from the target species 
as queries against the complete protein set from the reference 
species. Your reciprocal searches should return the original 
query protein as the top-scoring match, especially in the case 
of proteins encoded by immunity genes that are generally 
maintained across most species as single-copy orthologs (but 
see Note 3). In contrast, for multi-copy gene families, several 
proteins encoded by members of the gene family in the refer-
ence genome may be among the best-scoring matches. These 
reciprocal sequence homology searches will provide support 
for the lists of putative immunity genes, but you will need to 
perform downstream phylogenetic analyses (see Subheading 
2.1.3 step 6 below) in order to confirm single-copy orthologs 
and resolve the relationships among members of multi-copy 
gene families.

 2. The next step is to complement the global protein-protein 
homology searches of gene set with protein-domain-level 
searches. Run InterProScan [47] on the proteins from the tar-
get species’ gene set and the reference protein sequences to 
obtain detailed domain-level annotations of all protein 
sequences with significant matches to profiles from the 
InterPro member databases [48]. Next, use the InterPro 
domains that characterize each of the different immune gene 
families or pathway members (Table 2) to identify genes from 
the target species that encode proteins with significant matches 
to these domains (see Note 5). For example, serine protease 
inhibitors (serpins or SRPNs) are recognized by the “Serpin 
superfamily” (IPR036186) or “Serpin family” (IPR000215) 
profiles, or related profiles such as “Serpin, conserved site” 
(IPR023795) or “Serpin domain” (IPR023796). Exercise 
caution when the characteristic domains are promiscuous, 
meaning when they are also present in gene families unrelated 
to immunity, or when two or more distinct domains character-
ize a particular immune gene family. For example, Toll-like 
receptors (TLRs or TOLLs) contain “Leucine-rich repeat” 
domains, but these are also found in many other types of pro-
teins so their presence is not, on its own, diagnostic of TOLLs. 
Instead, TOLLs are more specifically characterized by several 
“Leucine-rich repeat” domains followed by a “Toll/interleu-
kin-1 receptor homology (TIR) domain.” The European 

Insect Immunogenomics



14

Bioinformatics Institute provides detailed InterProScan instal-
lation and usage instructions (https://www.ebi.ac.uk/inter-
pro/interproscan.html); the example here uses profiles from 
the Pfam database:

Scan the gene set protein sequences and compiled sets of 
reference sequences for matches to InterPro domains:
$ ./interproscan.sh -appl Pfam -i geneset_
proteins.fasta -f tsv -iprlookup

$ ./interproscan.sh -appl Pfam -i refer-
ence_proteins.fasta -f tsv -iprlookup

 3. A third approach to searching the target species’ gene set for 
candidate immunity genes is to use profiles built from the ref-
erence sequences. First, align each set of orthologous or 
homologous reference immunity protein sequences collected 
from several reference species using tools such as PRANK [49] 
or MAFFT [50]. Next, convert the resulting multiple protein 
sequence alignments into sequence profiles using HMMER 
[51]. The HMMER suite of tools can then be used to search 
the profiles against the target species’ gene set. Here we pres-
ent some examples of the commands that need to be run, but 
please see the user guides and installation instructions for the 
alignment tools and HMMER for full details. The input pro-
teins in FASTA format should consist of orthologs or homo-
logs from each of the reference species. Specifically, each 
FASTA file should contain only proteins encoded by homo-
logs of a single gene or conserved gene family, and the entire 
analysis should be repeated for each gene or gene family in the 
study.

Multiple protein sequence alignment example using PRANK:
$ prank -d input_proteinset1.fasta -o 
aligned_proteinset1.aln

Multiple protein sequence alignment example using 
MAFFT:
$ mafft input_proteinset1.fasta > aligned_
proteinset1.aln

Convert a multiple protein sequence align-
ment to a profile using HMMER:

$ hmmbuild proteinset1.hmm aligned_protein-
set1.aln

Combine all your profiles into a single profile library (here just 
three sets shown):
$ cat proteinset1.hmm proteinset2.hmm pro-
teinset3.hmm >profile_library

Compress and index the library of profiles:
$ hmmpressprofile_library

Robert M. Waterhouse et al.
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Search the library of profiles against the target species’ gene 
set using HMMER:
$ hmmscanprofile_librarygeneset_proteins.
fasta

 1. Your global protein sequence and profile searches and protein- 
domain searches will result in lists of candidate immune-related 
genes from the target species. With good supporting data, 
especially from transcriptomics (as described below in 
Subheading 2.2), automated prediction pipelines applied to 
well-assembled genomes generally produce gene sets with a 
high coverage of the true gene content [52–54]. The task nev-
ertheless remains challenging, and accurate predictions at the 
detailed level of gene intron-exon structures can be difficult to 
achieve even with extensive supporting data. Manual curation 
aims to verify that the automatically predicted gene models 
identified through your sequence and domain searches are in 
agreement with the available supporting evidence. You may 
undertake the curation process with a small team or you may 
bring together several groups of researchers and/or students 
(e.g., [55–57]) to examine your lists of candidate immunity 
genes. For a small team, the curation process may focus on 
quality control and targeted appraisal of specific genes of inter-
est. For example, quality control of seemingly anomalous 
results can confirm true novelties, such as the multi-PGRP-
domain PGRP proteins encoded in the banded demoiselle 
genome [58]. For a larger research community, the aims may 
be broader and may include taking advantage of researchers’ 
expertise to build a rich knowledge base for the target species. 
The tools and approaches described here are useful for both 
small- and large-scale curation efforts.

 2. Several computational resources need to be set up so that the 
genomic data from the target species can be easily queried by 
users with little or no bioinformatics expertise. You can achieve 
a local setup of the necessary resources with relatively modest 
computational equipment and the installation of several freely 
available bioinformatics packages and software. The key com-
ponents should include a genome browser and a sequence 
search interface. A particularly useful platform that allows for 
sequence-based database searching is the combination of the 
JBrowse genome viewer [59] with the Apollo annotation fea-
ture editor plug-in [60] and SequenceServer [61]. Software 
installation is beyond the scope of this chapter but is described 
in detail in the respective setup and user guides. These 
resources will provide you with a user-friendly environment to 
interrogate the genomics data without requiring experience 
with running command-line bioinformatics tools. They also 
offer the flexibility to search gene-by-gene for specific genes of 

2.1.3 Curating Candidate 
Immune-Related Genes
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interest, to search using sequences from species or genes that 
were not included in the compiled sets of reference sequences, 
or to use sequences from the target species to search for 
within-species homologs.

 3. A tBLASTn search of the reference immunity sequences 
against the target species’ genome assembly will enable visual-
ization of genomic loci with homology to the reference pro-
teins. tBLASTn uses the provided reference protein sequences 
to search the six- frame translations of the genome assembly 
nucleotides and is more sensitive than nucleotide-nucleotide 
searches. The tBLASTn results are useful because the auto-
mated pipeline used to predict gene models in the target spe-
cies may have missed or misannotated some genes or exons, 
meaning that they would be impossible or difficult to identify 
from searching only the predicted gene set. You should pro-
duce tabular format outputs of the tBLASTn searches because 
these can be loaded as data tracks for visualization within a 
genome browser after converting them into general feature 
format (GFF) output files (see Note 4). The following com-
mands illustrate how this can be achieved:

Format your genome assembly into a searchable database:
$ makeblastdb -in genome_assembly.fasta 
-dbtype nucl -out assemblyDB

Produce tabular results of searching your compiled refer-
ence protein sequences against the genome assembly:
$ tblastn -query reference_proteins.fasta 
-db assemblyDB -outfmt 6 -out referencesVS-
assemblyTAB.txt

 4. The locations of the best hits define genomic loci that likely 
encode orthologs or homologs of the reference sequences. 
Visualizing these using a genome browser enables you to 
assess how much of the reference sequence aligns to the target 
assembly and how well these alignments match up to the pre-
dicted gene model (see Note 6). Complementary supporting 
evidence comes from transcriptomics data in the form of RNA 
sequencing (RNA-seq) reads from samples prepared from 
your target species. The RNA-seq reads may derive from your 
own infection experiments (see Subheading 2.2 below), but if 
other datasets are available, then it is advisable to also include 
these as additional supporting data. You will need to align the 
reads to the genome assembly in order to visualize them in a 
genome browser, typically as both stacked individual read 
alignments and read coverage plots (see Note 4). Several bio-
informatics tools are able to align reads to an assembly (e.g., 
HISAT2 [62] or STAR [63]), and coverage plots can be built 
using bamCoverage from the deepTools suite [64]. Here we 
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present some examples of the commands that need to be run, 
but please see the user guides for full details.

Build an index of your genome assembly and then align 
fastq format RNA-seq reads using HISAT2:
$ hisat2-build genome_assembly.fastaindex_
name

$ hisat2 –x index_name -1 sample_1.fastq -2 
sample_2.fastq -S hisat2-mapped.sam

Build an index of your genome assembly and then align 
fastq RNA-seq reads to your assembly using STAR:
$ STAR --runModegenomeGenerate --genomeDir 
star-index --genomeFastaFiles genome_assem-
bly.fasta

$ STAR --genomeDir star-index --readFilesIn 
sample_1.fastq sample_2.fastq --outSAMtype 
BAM SortedByCoordinate

Produce an RNA-seq read coverage file using 
bamCoverage:
$ bamCoverage -b Aligned.sortedByCoord.out.
bam -o rnaseq- coverage.bw

 5. With the necessary resources in place, the next step is to exam-
ine the genomic locus encoding each candidate immunity 
gene in order to establish whether the predicted model is well 
supported (see Note 7). Well-supported models generally 
show RNA-seq coverage and spliced RNA-seq read align-
ments that match the intron-exon structure of the entire 
model and tBLASTn alignments for most of the model. 
Typical minor edits to improve the models include altering the 
intron-exon boundaries to match the aligned RNA-seq reads, 
removing non-supported exons (i.e., predicted exons that 
have no tBLASTn alignments and no aligned RNA-seq reads), 
or adding exons missed by the automated prediction pipeline 
(i.e., regions with tBLASTn alignments and/or aligned RNA-
seq reads where no exon was predicted). For example, Fig. 2 
shows how editing an incorrectly predicted intron-exon 
boundary to match the supporting RNA-seq read alignments 
produces a full-length gene model for Dicer-2. More substan-
tial edits include the merging of two or more neighboring pre-
dicted gene models that in fact encode a single gene, or the 
splitting of gene models where the automated gene prediction 
has incorrectly fused neighboring genes. Automated gene pre-
dictors are prone to such erroneous fusing of neighboring 
genes when the genes are homologous or have arisen from 
tandem gene duplication events. Thus it is worth paying par-
ticular attention to the gene model predictions of members of 
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multi-copy gene families. In addition, it is often challenging 
for automated pipelines to correctly predict two or more alter-
native transcripts from the same gene, so manual editing may 
be required to distinguish the individual transcripts based on 
the available supporting data.

 6. One reason for checking and correcting the candidate 
immune- related gene models is to facilitate subsequent phy-
logenetic analysis of immune genes or gene families of par-
ticular interest, including where putative duplications/
expansions have been noted from the initial searches. 
Molecular phylogenetic analysis aims to reconstruct the evo-
lutionary histories of sets of homologous sequences. 
Conceptually, this is achieved by contrasting the species phy-
logeny with the inferred gene trees to enable the confident 
assignment of orthologous relations [65]. In practice there 
are many different methodological approaches and 

Fig. 2 Example of how manual curation can improve automatically predicted gene models. The top panel 
shows the curated gene model and the original prediction of the Dicer-2 gene on the reverse strand (i.e., the 
5′ start is on the right and the 3′ end is on the left of the figure) from a mosquito genome. Exons are shown as 
rectangles connected with lines indicating introns, with predicted coding sequence (CDS) regions in light blue 
and predicted untranslated regions (UTRs) shown in white. RNA-seq read coverage is presented below the 
gene models in dark blue, clearly showing where reads from the mature messenger RNA align to the genome. 
Below that are alignments from tBLASTn searches with the Dicer-2 protein (AGAP012289) and the Dicer-1 
protein (AGAP002836) from Anopheles gambiae (the reference immune protein sequences). The lower panel 
shows the alignments of individual RNA-seq reads to this locus (in dark gray, with colors indicating mis-
matches between the reads and the reference genome assembly), with reads that map across potential splice 
junctions connected with black lines. Editing just one intron-exon boundary to match the supporting RNA-seq 
and tBLASTn evidence (shown with the red arrow) corrects the gene model. The first six exons were incorrectly 
predicted to form a multi-exon 5′ UTR (all white rectangles) in the original gene model. In the curated gene 
model, all six exons now form part of the CDS (i.e., the regions that will be translated into protein), with just a 
short 5′ UTR at the start of the first exon. The translation of the curated gene model now encodes a full-length 
Dicer-2 protein
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 bioinformatics tools designed for preparing and analyzing the 
sequence data required for phylogenetic tree construction, 
the discussion of which is beyond the scope of this chapter. 
One suite of such tools that is particularly user-friendly for 
novices is the Molecular Evolutionary Genetics Analysis 
(MEGA) software [66]. In the context of characterizing your 
sets of newly identified putative immune-related genes, the 
phylogenetic analyses will allow you to (1) confirm or refine 
orthologous relations suggested by your reciprocal sequence 
homology searches and (2) place putative gene duplications 
or losses in their appropriate evolutionary contexts.

While searching based on sequence homology is a valuable 
approach to identify canonical immune genes in new species, 
some immunologically important genes may be novel to the tar-
get species or otherwise difficult to identify from sequence data. 
In many cases, however, expression of these genes is responsive to 
infection [21]. These can include both genes that are directly 
involved in immune defense and also genes that are regulated as 
a consequence of infection. Using RNA sequencing (RNA-seq), 
it is possible to obtain a direct readout of the transcriptional 
response to infection.

There are a number of important experimental design issues to 
consider before embarking on RNA-seq-based identification of 
immune-responsive genes [67]. Two key requirements must be 
met for a successful experiment. First, in order for the protocol 
outlined below to be successful, a mostly complete draft genome 
with a high-quality gene set must exist for the target insect. While 
it is possible to use RNA-seq data to build a de novo transcriptome 
[68, 69] (and see Chapter 2 of this book) or to aid gene prediction 
for a draft genome without a gene set [62, 70], this is beyond the 
scope of this chapter and we do not recommend it unless there is 
no alternative. Second, it must be possible to experimentally infect 
the target insect in the laboratory. Ideally, the insect can be main-
tained for several generations under controlled conditions to elimi-
nate effects of previous exposure to pathogenic challenges or other 
stimuli that could modulate the immune response.

The simplest experimental design to identify genes that are 
transcriptionally responsive to infection would include just a single 
control condition (either naive, untreated insects or sterilely 
wounded insects) and a single experimental condition at some time 
post-infection with the desired infectious challenge. More complex 
designs could include multiple controls, multiple pathogenic 
agents, and/or multiple time points. As a general rule of thumb, a 
minimum of three biological replicates should be included for each 
experimental treatment and control, although additional replicates 
will increase statistical power [71–74]. If the target insect is so 
small that sufficient RNA is hard to obtain from a single insect, 

2.2 Identification 
of Infection- 
Responsive Genes

Insect Immunogenomics

https://doi.org/10.1007/978-1-0716-0259-1_2


20

pools of genetically similar (or ideally identical) individuals can be 
used, but this does not eliminate the need for multiple biological 
replicates of the experiment.

Insects mount different immune responses to different types of 
infectious challenge (e.g., bacterial, fungal, viral, protozoan, nema-
tode, etc.), and different challenges will therefore elicit different 
transcriptional responses. Injection with bacteria or bacterial cell 
wall and membrane components is often used as a generic immune 
stimulus for identification of genes that are transcriptionally 
responsive to infection [19, 20]. Here, we detail a protocol for 
infection of a small insect like Drosophila or a mosquito with a live 
bacterium. The protocol is demonstrated visually in [75] and can 
be modified for larger insects or for other infectious agents. The 
experimenter should choose the most appropriate challenge for the 
system being queried and modify delivery of the challenge 
accordingly.

 1. In order to minimize experimental noise, all insects should be 
reared in the laboratory without exposure to pathogens prior 
to the experiment. This will allow optimal comparison of the 
expression profiles of infected insects to unchallenged con-
trols. Biological replicates should be collected for both chal-
lenged and unchallenged insects (see Note 8). For small insects 
or small tissue samples taken from larger insects, the material 
from multiple individuals can be pooled within each biological 
replicate. Using co-reared insects that are the same age and sex 
will minimize experimental noise, although in some cases it 
may be of interest to make comparisons across life stages, 
sexes, or rearing conditions (see Note 9).

 2. Culture the infectious agent and prepare it for infection. In 
the case of bacterial challenge, infection may be delivered with 
a single bacterium or a mixture of different bacteria, and the 
bacteria may be either alive or killed by incubation at 60 °C for 
30 min (see Note 10).

 3. Challenge the insects in the infection treatment. Bacteria, 
planktonic fungi, and viruses can be injected into insects 
with a microcapillary needle. Live bacteria may also be intro-
duced with a septic pinprick (demonstrated in detail in [75]) 
(see Note 11). Other challenges, such as infection with 
filamentous fungi (e.g., [76]) or eukaryotic parasites (e.g., 
[77]), require different methods.

 4. Collect the insects at the prescribed time point post-infection 
(see Note 12). RNA may be isolated immediately or the insects 
may be flash-frozen in liquid nitrogen and stored at −80 °C 
until RNA extraction is to be performed. If RNA will be 
 performed using a TRIzol (Invitrogen) extraction, the insects 
or insect tissue may be stored at −80 °C in TRIzol.

2.2.1 Artificial Infections 
for RNA-Seq Analysis
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 5. Isolate high-quality RNA from the infected and control insects. 
There are a variety of protocols and commercial kits available for 
RNA isolation, and any of these should work well for RNA 
sequencing. Isolations using TRIzol reagent (Invitrogen) are 
reliable and inexpensive. A thorough protocol for RNA isola-
tion using TRIzol is outlined in Chapter 2 of this volume. 
Consult with the facility that will perform your RNA sequenc-
ing to see whether they have preferences or recommendations 
as to which RNA isolation procedure should be employed.

 6. Perform the RNA sequencing (RNA-seq) on your infected 
and control insect material. In most circumstances, we recom-
mend that inexperienced practitioners outsource library prep-
aration and sequencing to a core facility or commercial 
provider. The library preparation is highly technical and labor 
intensive, and the technology changes quickly. Unless a very 
large number of libraries are going to be generated, the cost 
savings associated with doing the preparation yourself are gen-
erally not worth the effort or the risk of failed reactions. 
Therefore, if possible, use a facility that will accept RNA 
shipped on dry ice and that prepares their libraries and per-
forms sequencing in-house. The optimal read length and 
depth of sequencing will depend on project budget and a vari-
ety of other factors that will vary among projects. For the anal-
ysis described below, we recommend a minimum of ten million 
fragments sequenced per replicate, using at least 40-bp paired-
end reads. Increasing read depth to 20–30 million fragments 
per replicate can be beneficial if project scope and funding 
allow (see Note 13), and increasing read length to 75 bp will 
decrease the number of reads that map ambiguously to mul-
tiple locations in the genome (e.g., reads from members of 
closely related gene families).

 1. The first step in differential expression analysis is using a read 
alignment or pseudoalignment (see Note 14) to estimate 
expression of each transcript or gene (see Note 15). Here we 
present one option for this, but there are many alternative 
choices (see Note 16). The protocol here assumes you have 
paired-end sequencing reads from your core facility or com-
mercial provider, in fastq format. We describe optional quality 
control and trimming steps in Note 17. A workflow of the 
steps required to perform differential expression analysis is 
presented in Fig. 3. In the following steps, command lines are 
given with variables (file names, species, and sample identifi-
ers) that will need to be changed for each experiment in curly 
braces {}. Commands are given in monospace type.

 2. This protocol uses commands from the kallisto program [78] 
(https://pachterlab.github.io/kallisto/) and should run in 
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less than an hour per sample on a typical laptop computer. 
Software installation is beyond the scope of this chapter but is 
described in detail here: https://pachterlab.github.io/kal-
listo/download. The first step in using kallisto is to prepare 
the index. Indexing takes a plain-text FASTA file containing 
the nucleotide sequences of all transcripts from the gene set of 
a given genome and converts it into a format that allows for 
subsequent rapid pseudoalignment of the RNA-seq reads to 
the transcripts. The complete set of transcripts from the gene 
set to be analyzed is referred to in the kallisto documentation 
as the “reference transcriptome” to which the RNA-seq reads 
will be mapped. For your target species, you should obtain the 
FASTA file of transcripts from the official gene set provided by 
public databases (e.g., Ensembl, FlyBase, NCBI, VectorBase). 
If the data are only available in-house, then use the FASTA file 
of transcripts resulting from the full genome annotation 
pipeline.

 3. Prepare a reference transcriptome index for kallisto. First, 
make a working directory and copy the transcriptome FASTA 
file to it. You can then index this file and proceed to quantify 
transcript abundances. You will obtain a {SAMP}_out direc-

Fig. 3 Workflow of steps required for immune transcriptome analysis. Immune transcriptome analysis can 
proceed once the RNA-seq reads (in fastq format) from all the infection and control samples have been 
obtained. The analysis also requires the complete set of transcripts from the gene set annotation of the target 
species, which may also contain updated gene model annotations based on manual curation described in 
Subheading 2.1.3 of this chapter. In the kallisto documentation, this complete set of transcripts is referred to 
as the “reference transcriptome” to which the RNA-seq reads will be mapped. RNA-seq reads (possibly after 
pre-processing; see Note 17) are mapped to transcripts by kallisto using a pseudoalignment step that then 
allows for the quantification of transcript abundances from each condition to determine expression levels of 
each gene and isoform. Finally, differential expression of genes and isoforms among conditions is modeled 
using sleuth/R to define sets of infection-responsive genes
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tory for each sample/replicate you generated, which can be 
used with sleuth (or other tools) as described below to esti-
mate differentially expressed transcripts and genes per 
condition.

In the working directory and with kallisto installed:
$ kallisto index -i {INDEX_NAME}.idx 
{TRANSCRIPTOME}.fasta

Quantify abundance of transcripts in each sample, where 
{SAMP} is the fastq base name for a particular replicate/
condition:
$ kallisto quant -i {INDEX_NAME}.idx -o 
{SAMP}_out -b 100 {SAMP}_R1.fastq.gz 
{SAMP}_R2.fastq.gz

 4. There are many toolkits for detecting genes with differential 
expression between conditions. Here we present protocols 
for using sleuth [79], but discuss alternatives in Note 18. 
Note that sleuth requires the technical bootstraps generated 
by kallisto for full functionality, and thus we only recommend 
this protocol to be used with data analyzed first by kallisto.

Open R and ensure that the sleuth package is installed, as 
well as tidyverse which is used for some data manipulation 
tasks (see Note 19):
$ library(sleuth)

$ library(tidyverse)

Set the path to your kallisto output files:
$ kall_path <- {PATH/TO/FILES}

Get sample identifiers from names of kallisto runs:
$ sample_id <- dir(file.path(kall_path))

Get the directories where the kallisto runs are saved:
$ kal_dirs <- data.frame(sample_id = sample_
id, path = file.path(kall_path, sample_id))

Load the table that associates sample identifiers with treat-
ments and add file paths. You will need to create this yourself 
(see Note 20):
$ s2c<-read_table(“{PATH/TO/TABLE}”)%>% 
full_join(kal_dirs, by=c(“sample_id” = 
“sample_id”)

Load gene to transcript map (see Note 21):
$ t2g<-read_table(“{T2G_FILE”})

Run sleuth prep; note this aggregates tran-
script-level counts into gene-level counts:

$ so<-sleuth_prep(s2c, extra_bootstrap_
summary=TRUE, read_bootstrap_tpm=TRUE, 
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target_mapping = t2g, aggregation_column = 
‘gene_id’)

Fit a sleuth model (see Note 22):
$ so<-sleuth_fit(so, ~treatment, ‘full’)

$ so<-sleuth_wt(so, “inf”, which_model = 
"full")

Output results:
de_genes<- sleuth_results(so, test=“inf”)

Note that there are many quality control and plotting 
options available in sleuth, which can be explored using the 
built-in Shiny Server. To launch run:
$ sleuth_live(so)

3 Notes

 1. In addition to the references presented in the introduction, 
literature reviews that focus on different pathways or responses 
can provide additional details as to the expected structure and 
function of immune system components (e.g., on antiviral 
immunity [80], or the IMD [81], JAK/STAT [82], or Toll 
[83] pathways). While studies of the Drosophila immune sys-
tem provide a rich knowledge base for understanding insect 
immunity, this model should be considered as a sample of the 
full-spectrum immunity in insects. Experimental examination 
of immune responses in other insects has revealed many fea-
tures that are widespread, such as melanization reactions and 
presence of the principal immune signaling pathways. 
However, they have also identified many lineage-specific fea-
tures that differ greatly from observations to date in flies. For 
example, adult Drosophila have very few circulating hemocytes 
(blood cells) [84] so the relative importance of cellular immu-
nity is probably underestimated in Drosophila relative to other 
insects. With the great diversity of insect species (over 500 
million years of evolution) and the variety of pathogens they 
encounter in their various ecological niches, such differences 
are to be expected.

 2. Immune-related genes of the canonical repertoire in fact 
comprise many genes that may not have direct experimental 
evidence supporting their roles in immunity. It is also 
important to note that many genes and pathways have pleio-
tropic functions, meaning a single gene can produce a protein 
that is involved in different biological processes, so being clas-
sified as a canonical immunity gene does not preclude involve-
ment in other processes. Similarly, the sub-classification of 
genes into recognition, signal transduction, modulation, or 
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defense/effector phases is a useful framework, but it does not 
 necessarily exclude the possibility of the protein being involved 
in other processes.

 3. For gene models with alternative transcripts, it is advisable to 
collect the sequences for each transcript that produces a dis-
tinct protein product through alternative splicing, because (1) 
annotation prediction of alternative transcripts by automated 
pipelines is particularly challenging so having a reference set of 
possible transcripts will help to build accurate gene models 
during curation and (2) being able to select equivalent tran-
scripts will make downstream phylogenetic analyses more 
robust and, in the case of alternatively spliced protein domains, 
will allow for domain-based analyses. It should also be noted 
that sequence homology searches with the different protein 
products of alternative transcripts may obscure truly reciprocal 
best matches at the level of the gene. These can generally be 
resolved by examining the genomic loci to determine equiva-
lence at the transcript level.

 4. Performing global searches of all the compiled sets of refer-
ence protein sequences against the proteins from the gene set 
will require running some bioinformatics sequence analysis 
tools. Working with colleagues who have experience running 
such analyses will allow novice team members to learn these 
key skills. Installing the required software and setting up the 
resources to run a local genome browser and sequence search 
interface can be achieved with a range of freely available bioin-
formatics tools. Aligning RNA-seq reads to the genome 
assembly and producing tracks for visualization in a genome 
browser will greatly facilitate the process of manually curating 
the candidate immune-related genes. Providing detailed 
instructions for installing and running these tools is beyond 
the scope of this chapter. Instead, team members should be 
able to relatively easily set up these necessary resources follow-
ing instructions in the references and links provided herein. 
These tools will greatly facilitate both the gene identification 
and curation steps, e.g., being able to visualize the genomic 
locations of the sequences that produce significant matches to 
the reference protein sequences (using the tabular tBLASTn 
results) in order to find genes that may have been missed by 
the automated gene prediction pipeline as well as highlighting 
possible errors in the predicted gene models that need to be 
corrected during manual curation.

 5. Examining the results from running InterProScan on the com-
piled sets of reference proteins will provide an up-to-date sum-
mary of which proteins encoded in the target genome contain 
domains that are characteristic of members of the canonical 
immune gene repertoire. It is important to note that InterPro 
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entry types range from general to specific:  homologous super-
family, protein family, domain, repeat, or site. Thus the more 
general entry types may recognize a much broader set of pro-
teins than the immune genes of interest. For example, the pro-
phenoloxidases (PPOs) are recognized by the “Hemocyanin/
hexamerin” family (IPR013788) profile, which also recognizes 
insect hexamerins (storage proteins).

 6. The alignments that define significant matches between the 
reference protein sequences and the target assembly are not 
expected to correspond perfectly to the predicted gene model 
in the target species. Evolutionary divergence between the ref-
erence and target species means that only the relatively well- 
conserved regions of most proteins will produce confident 
alignments. Highly diverged regions, regions of low- 
complexity sequence, and short exons may produce no signifi-
cant hits and therefore could appear as non-supported parts of 
the gene model. In addition, the alignment boundaries are 
unlikely to match exactly the intron-exon boundaries of the 
gene model since tBLASTn searches do not take putative 
splice sites into account. Thus, the homology searches serve to 
identify the most likely genomic loci encoding genes of inter-
est and they provide support for the predicted gene model, 
but differences between the alignment coordinates and the 
gene model are to be expected.

 7. Detailed practical guidelines for performing manual curation 
of predicted gene models and assessing the supporting evi-
dence using the Apollo online collaborative genomic annota-
tion editor are provided in the documentation and user guide 
materials (http://genomearchitect.github.io). Additional 
training materials include several webinars available through 
YouTube, e.g., from the Bioinformatics Platform for 
Agroecosystem Arthropods https://www.youtube.com/
watch?v=BMeSwdKiO_E or from the European Molecular 
Biology Laboratory Australia Bioinformatics Resource 
https://www.youtube.com/watch?v=Wec7ZlXykQc.

 8. The simplest possible experimental design is a single control 
(three replicates of either untreated insects or sterilely wounded 
insects) compared to three replicates of infected insects assayed 
at a single time point post-infection. More complicated exper-
iments might include a time series after infection to capture 
transcriptional dynamics in response to infection. Depending 
on the goals and scope of the project, a variety of options are 
feasible. More complex designs (e.g., those with more than a 
single control and a single infected treatment) will require 
more complicated analysis.

 9. Exact age of insects will depend substantially on the species 
and goals of the project (e.g., comparisons across life stages or 
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sexes may be of interest). In general, to minimize uncontrolled 
noise, ensuring that the experimental insects are of roughly 
the same age and the same sex is standard practice. The num-
ber of individual insects depends on size and the amount of 
RNA that can be obtained from single individuals. Your 
sequencing provider can tell you how much starting material 
is necessary for library preparation, which provides a starting 
point for the infection experimental design.

 10. Challenge with a single bacterial strain will give a clean mea-
surement of the transcriptional response to that bacterium, 
whereas challenge with a pool of bacterial species (e.g., 
including both Gram-negative and Gram-positive) will reveal 
a broader spectrum of responses but will not allow determi-
nation of which genes are responding to which microbe. Live 
bacterial infection will stimulate transcriptional responses to 
both the presence of bacteria (e.g., immune stimulation by 
peptidoglycan) as well as responses to pathogenic damage 
caused by infection, which can also be a strong trigger of 
immune responses [85]. The ideal bacterial concentration is 
one that is sufficient to induce a strong immune response 
without causing substantial mortality so that immune 
responses do not become conflated with transcriptional sig-
natures of death. In most cases pilot experiments using dif-
ferent concentrations and measuring mortality over time will 
be necessary to calibrate the proper dosage. Challenge with 
dead bacteria or purified bacterial components eliminates 
concerns about host mortality and often is sufficient for stim-
ulating a robust response [25]. It should be noted that some 
pathogens are capable of suppressing host responses (e.g., 
[86]), so heat- killing these prior to infection may yield a 
stronger response. Pathogens such as viruses, nematodes, 
and protozoa generally need to be alive in order to infect so 
these should not be heat- killed unless required by the specific 
objectives of the experiment. A standard method for cultur-
ing bacteria prior to infecting D. melanogaster is shown visu-
ally in [75].

 11. Delivering infection by septic pinprick is less quantitatively 
controlled than performing injections with a microcapillary 
needle but also requires less equipment and technical profi-
ciency. For many experimental designs, especially those using 
a mixed pool of bacteria to elicit a broad-spectrum immune 
response, precise quantification of the challenges is probably 
unnecessary. It should be noted, however, that septic pinprick 
delivers fairly low infection dose that may not be sufficient to 
stimulate a robust response in large insects such as large cater-
pillars and beetles. For these insects, microcapillary injection 
may be required.
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 12. The time after infection at which to measure expression is an 
important decision. Bacterial infections elicit a rapid response in 
insects, and sampling at 8–12 h post-infection is common and 
experimentally convenient (allowing infection in the morning 
and freezing of infected insects in the evening, or infections in 
the evening and freezing the following morning) [7, 87, 88]. 
However, transcriptional dynamics vary depending on the 
pathogenic agent and other experimental variables [25, 89]. 
Therefore it is advisable to perform preliminary experiments 
before collecting samples for sequencing to be able to select the 
most appropriate conditions and time points. These pilot studies 
could involve low-coverage RNA-seq from a single sample across 
multiple time points or could involve quantitative PCR of candi-
date immune effectors, such as antimicrobial peptides, that pro-
vide reliable readouts of immune system activation.

 13. In general, power to detect differential expression scales more 
with replicate number than with reads per sample [71]. So for 
a fixed amount of sequencing, there is more experimental gain 
in sequencing a greater number of replicates to individually 
lower depth than sequencing fewer replicates to higher depth. 
However, given a fixed number of replicates, increasing depth 
will also increase resolution and power up to a point. 
Sequencing depth can be adjusted to the scope of the project 
and available budget.

 14. There are two approaches to determining which transcript a 
read arises from. The traditional approach uses standard read 
alignment metrics to map a particular read to a genome (or 
transcriptome) sequence and then uses the mapping position 
to determine the transcript. There are many programs that can 
perform this alignment procedure, as recent benchmarking 
studies show [90]. The pseudoalignment approach instead 
uses representations of transcripts and reads to find a fast 
match; this has the benefit of greatly increased speed and com-
putational efficiency, at no cost to accuracy [91].

 15. For the purposes of identifying genes regulated by infection, 
aggregating results to gene-level summaries (in which expres-
sion values are aggregated across all alternative isoforms of a 
gene) is often the most desirable outcome. There is some 
debate about the best way to do this, e.g., [92]; we have pre-
sented one option but there are alternatives such as those 
described in the discussion here: https://pachterlab.github.
io/sleuth/walkthroughs. In addition, when evaluating alter-
native splicing and related questions, it is essential to estimate 
transcript-level differential expression instead of gene-level 
differential expression.

 16. We present a method using kallisto [78] to generate expres-
sion estimates for use in downstream pipelines, but there are 
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several alternatives, including salmon, which also uses 
 pseudoalignment [93]; RSEM, which uses full alignment 
[94]; and others. kallisto has the considerable advantage of 
low compute requirements, meaning a typical experiment can 
be analyzed on a laptop computer without the need for dedi-
cated computing clusters.

 17. Trimming low-quality reads generally is not necessary for 
RNA-seq differential expression analysis, although removing 
adaptors can be useful if your reads have substantial adaptor 
contamination. There are a number of tools for doing this, 
including Trimmomatic [95] and NGmerge [96].

 18. There are a wide variety of R packages that can fit differential 
expression models to RNA-seq data, including DESeq2 [97], 
limma-voom [98], and edgeR [99]. We focus on sleuth here, 
as it is designed to work with the output of kallisto, but all of 
the listed tools perform well.

 19. For most packages, including tidyverse and dependencies (but 
not sleuth), it should be possible to install them using the 
install.packages(“{PACKAGE NAME}”) command. 
See the tidyverse documentation and the sleuth documenta-
tion for additional details.

 20. Sleuth requires a table that has sample_id as one column and 
the treatment (e.g., infected, control) as the second column, 
in order to match samples to conditions. This can be prepared 
in Excel or similar spreadsheet software, saved as a CSV file, 
and loaded into R.

 21. To aggregate transcript-level results into gene-level counts 
requires a file mapping transcript identifiers to gene identifiers. 
This should be a text file with two columns, one with tran-
script identifiers matching the transcripts used in kallisto and 
the other with gene_id.

 22. Sleuth uses two approaches to estimate significance of differ-
ential expression: a Wald test, which compares two conditions, 
and a likelihood ratio test, which can compare arbitrary nested 
models. In this case, we show how to run a simple Wald test 
comparing an infected sample and control sample, for a simple 
experiment with only two conditions. For more complex 
experiments, a likelihood ratio test may be more useful. See 
the sleuth manual for details.
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