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Abstract

Autophagy and phagocytosis are cellular immune mechanisms for internalization and elimi-

nation of intracellular and extracellular pathogens. Some pathogens have evolved the ability

to inhibit or manipulate these processes, raising the prospect of adaptive reciprocal co-evo-

lution by the host. We performed population genetic analyses on phagocytosis and autop-

hagy genes in Drosophila melanogaster and D. simulans to test for molecular evolutionary

signatures of immune adaptation. We found that phagocytosis and autophagy genes as a

whole exhibited an elevated level of haplotype homozygosity in both species. In addition, we

detected signatures of recent selection, notably in the Atg14 and Ykt6 genes in D. melano-

gaster and a pattern of elevated sequence divergence in the genderblind (gb) gene on the

D. simulans lineage. These results suggest that the evolution of the host cellular immune

system as a whole may be shaped by a dynamic conflict between Drosophila and its patho-

gens even without pervasive evidence of strong adaptive evolution at the individual gene

level.

Introduction

Phagocytosis is a primary cellular immune process in Drosophila [1]. During phagocytosis,

extracellular pathogens are recognized by opsonins and phagocytic receptors, engulfed at the

host membrane, and then internalized and degraded in compartments called phagosomes [2]

(Fig 1). Autophagy is an alternative cellular mechanism to remove intracellular pathogens [3].

During autophagy, intracellular bacteria and viruses are encapsulated by isolation membranes

called phagosphores, which then are nucleated and expanded to form autophagosomes to

destroy the pathogen [4, 5] (Fig 1). Both phagosomes and autophagosomes are eventually

fused with a lysosome to degrade internalized pathogens [6]. While autophagy and phagocyto-

sis were previously thought to be distinct pathways, many autophagy proteins participate in

the later stages of phagocytosis [6–8]. When phagocytosis fails to eliminate pathogens due to

modification or damage to the phagosome by bacteria, autophagy works as a back-up process

to overcome infection [9, 10].
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Pathogens evolve to escape, resist, or compromise the host immunity [11]. Bacteria are

known to inhibit or evade phagocytosis by preventing host opsonins and phagocytic receptors

from binding to bacterial molecules [12, 13] and blocking host signaling pathways via effector

proteins and toxins [14–16]. Similarly, bacteria and viruses also interfere with host autophagy

by disrupting the signaling [17, 18] and blocking the production of reactive oxygen species

(ROS) that sustains autophagy [19]. When a pathogen factor interferes with a critical host pro-

tein, the host protein can counter-evolve the bacterial hindrance via novel mutations. The

change in the host may place renewed evolutionary pressure on the bacteria, and the process

can repeat ad infinitum leading to a dynamic co-evolutionary conflict, or arms race [20, 21].

Host alleles that resist or overcome pathogen interference mechanisms may be adaptive,

potentially resulting in signatures of positive selection as beneficial alleles favored by natural

selection rise to high frequency within a population. These alleles would exhibit a reduced

level of polymorphism around the selected sites, and would accumulate a proportional excess

of rare variants as the population recovers from a selective sweep [22]. Recurrent adaptive fixa-

tions over long evolutionary timescales could result in an elevated rate of amino acid diver-

gence between species [23].

In this study, we used molecular population genetic analyses to test for adaptation in autop-

hagy and phagocytosis genes. We analyzed published sequence data from D.melanogaster and

D. simulans collected in Eastern Africa [24, 25]. We found that genes in autophagy and phago-

cytosis pathways as a whole showed an elevated level of homozygosity in both species. The

individual genes Atg14 and Ykt6 showed evidence of non-neutral evolution in D.melanogaster
while gb showed signatures of non-neutral evolution in D. simulans.

Materials and methods

Samples used in the population genetic analysis

For D.melanogaster, the sequenced genomes of 197 haploid embryo Siavonga lines from the

Drosophila Genome Nexus Project 3 were used [25]. These lines represent a single ancestral

population of D. melanogaster from Zambia. For D. simulans, genome sequences from 20 iso-

female lines, 10 collected in Madagascar and 10 collected in Kenya, were used [24]. In addition,

a reference sequence of D. yakuba was used as an outgroup [26].

Curating genes of interest and control genes from the literature

A list of genes known to be involved in phagocytosis and autophagy was established by review-

ing the primary literature (S1 and S2 Tables). In addition to the known phagocytosis and

autophagy genes in Drosophila, Drosophila homologs of phagocytosis or autophagy genes char-

acterized in other organisms were included. Each gene was assigned to a functional category

(e.g. Autophagy induction) (S1 and S2 Tables; Fig 1). To test whether phagocytosis and autop-

hagy pathways show different evolutionary patterns than canonical humoral pathways, known

humoral immune signaling and recognition genes were used as a comparison. To control for

effects of gene structure and chromosomal position, control genes were chosen to be similar to

the focal immune genes in gene length (0.5-2x length of the coding region of the focal gene)

and gene location (within 60kb ± of the start site of the focal gene). Three or four control

genes that matched the criteria and had no annotated immune function were chosen for each

Fig 1. Stages of autophagy and phagocytosis pathways. Genes in autophagy (red) and phagocytosis (blue) pathway function to recognize, internalize, and

degrade cell debris and intracellular (purple) and extracellular pathogens (green). Organelles, such as phagosomes and autophagosomes, are form in the

course of the process and are eventually fused with a lysosome full of hydrolytic enzymes (yellow) to degrade internalized pathogens.

https://doi.org/10.1371/journal.pone.0205024.g001
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focal gene. If a focal gene had fewer than three control genes that matched the criteria, it was

removed from downstream analysis. Pairing focal and control genes controlled for potential

effects of gene length and recombination rate. To ensure that focal and control genes indeed

are matched for local recombination rate, the predicted recombination rates for all genes were

examined using the Drosophila melanogaster Recombination Rate Calculator (RRC, version

2.3, [27]). This tool provides estimates of recombination rates based on the Marey map

approach [27] and direct measurement [28]. Both RRC and Comeron estimates showed that

the correlation between recombination rates of focal and control genes in D.melanogaster is

strong, confirming that focal and control genes truly share a similar recombination environ-

ment (R2 = 0.994 based on RRC midpoint and R2 = 0.890 based on Comeron midpoint, S1

Fig). The presence of inversions can create strong haplotype structure and influence patterns

of polymorphisms [29]. To minimize the effect of inversions, no focal gene or control gene

used in the study was near the boundaries of known inversions. Populations collected in Africa

sometimes contain genomic segments inferred to have recent cosmopolitan (non-African)

ancestry [30]. To specifically analyze African genetic variation and eliminate the effect of relat-

edness among individual lines, genomic regions that were thought to have come from cosmo-

politan (non-African) ancestry and that showed evidence of identity-by-descent in D.

melanogaster were masked using Perl scripts obtained from http://www.johnpool.net/

genomes.html.

Processing sequence data prior to population genetics analyses

Using custom scripts and bedtools [31], the coding sequence of each gene was extracted based

on coordinates from the General Feature Format (GFF) file of the reference sequence for D.

melanogaster (FlyBase release 5.25) and from the GFF file provided by the Thornton Lab

GitHub (https://github.com/ThorntonLab) for D. simulans. When multiple isoforms were

available for a gene, the longest sequence was chosen for downstream analysis. Custom filters

were applied to exclude sequences with sites containing more than 10% missing data (noted as

Ns) and then alignment was performed using PRANK [32]. Genes with poor sequencing or

alignment quality, with large regions of gap, or with no annotation in any of the species were

excluded from downstream analysis. To standardize the number of lines surveyed for each

gene, 149 D.melanogaster lines and 14 D. simulans lines were randomly subsampled.

Surveying the level of polymorphisms and divergence

To evaluate the patterns of polymorphisms in each species, the following population genetic

statistics were calculated: Watterson’s θ (θw), Tajima’s D (TajD), normalized Fay and Wu’s H
(nFWH), Ewens-Watterson test statistic (EW), and the compound statistics that combined

Tajima’s D, normalized Fay and Wu’s H with Ewens-Watterson test statistic (DHEW). θw indi-

cates the level of DNA sequence variation, and a reduction in sequence diversity can be due to

a recent selective sweep [33]. Tajima’s D test statistic compares the number of pairwise differ-

ences between individuals to the total number of segregating sites and detects the level of

mutations of intermediate frequency relative to mutations that segregate at low frequencies

[34]. The mutations that initially arise after variation is purged in a selective sweep will neces-

sarily be at low frequency, skewing the site frequency spectrum and causing Tajima’s D to

become negative [23]. Negative Tajima’s D values can also be caused by population expansion.

Fay and Wu’s H test statistic detects excess of high frequency alleles in the derived state, which

is a signature of selective sweeps that is less likely under population expansion [35]. The nor-

malized version of the H test was used to increase statistical power. The EW test statistic mea-

sures haplotype homozygosity by comparing the observed homozygosity to the expected
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homozygosity [36, 37]. A P-value greater than 0.95 suggests that allele frequencies are more

unevenly distributed than the neutral expectation, which suggests directional selection. The

DHEW statistic is a composite statistic that provides more power to detect cases of positive

selection [38, 39]. By combining Tajima’s D and normalized Fay and Wu’s H with Ewens-Wat-

tersons expected homozygosity (EW), which is generally not sensitive to recombination, the

DHEW overcomes the effect of recombination rates on the site frequency spectrum and makes

the inference more conservative. The DHEW test first calculates required statistics separately

and then combines the respective P-values into a vector to determine whether this vector devi-

ates from the expectation under selective neutrality [38, 39]. A significant P-value points to

positive selection. To calculate aforementioned statistics, the program DH was used [38–40].

Each test statistic was compared to 1) null distributions created using coalescent simulations

with no recombination to obtain a P-value [39], and 2) the test statistics obtained from geno-

mic control genes.

To evaluate the patterns of amino acid divergence, the ratio of non-synonymous to synony-

mous polymorphic sites in each species (Pn/Ps) and the ratio of non-synonymous to synony-

mous differences between the species (Dn/Ds) were calculated and the McDonald-Kreitman

test (MK test) was performed [41] using a custom script. If the observed value of Pn/Ps is

much different from Dn/Ds at a locus as determined by Fishers exact test, that locus is rapidly

diverging between the two species at the level of amino acid sequence, which is consistent with

adaptive evolution. In addition, the Direction of Selection (DoS) coefficient was calculated

[42]. DoS >0 indicates the action of positive selection and DoS <0 indicates the action of puri-

fying selection. To correct for multiple testing, the p.adjust function in R based on the Benja-

mini and Hochberg method was implemented [43].

Processing statistics and testing for significance

To assess whether phagocytosis and autophagy pathways as a whole show a departure from

their control genes for various test statistics, the difference between the value of a given statistic

in the focal gene and the median value of the statistic for the matched control genes, hereafter

called a ‘comparison score’, was calculated for each focal-control pairing. We then evaluated

whether the mean of all comparison scores was significantly different from 0 using both a t-

test (parametric) and the Wilcox rank sum test (non-parametric) (Table 1). If the 95% confi-

dence interval contains 0, the test provides no evidence for any statistically significant differ-

ence between the two groups as a whole. To identify individual genes that bear patterns of

non-neutral sequence evolution in each species, the P-values of, D,H, EW, and the compound

test statistic DHEW were used. To ensure that the pattern seen on focal genes is indeed due to

a local selection, the comparison score was calculated for Tajima’s D, Fay and Wu’s H, and

DoS for each focal-control pair and the scores were ranked from largest to smallest (listed as

‘rank’ column in Tables 2 and 3). A total of 68 and 65 comparison values make up the distribu-

tions for D.melanogaster and D. simulans, respectively. Randomly assigning a control gene to

be "focal" and re-calculating the ranks of comparison scores for these statistics created a distri-

bution of ranks. Then comparison scores from true coupling of focal and control genes were

compared to this permutated distribution (listed as ‘rank against null’ column in Tables 2 and

3). A total of 245 and 232 values were used to build null distributions for D.melanogaster and

D. simulans, respectively. The more extreme this rank is, the stronger the confidence is that the

focal gene differs from the control genes for a given statistic. We set a threshold for concluding

evidence that a gene had experienced a selective sweep as requiring 1) a significant P-value for

DHEW, 2) significant corrected P-values for two of any of the test statistics, and 3) comparison

scores for D,H, or DoS ranking in the top 10% for the ‘rank’ test and the top 5% for the ‘rank

Evolution of fly cellular immunity
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Table 1. Evaluation of polymorphism and divergence at the pathway level.

I) t-test

D. melanogaster
Test statistic

Class θw TajD nFWH EW DoS

Internalization 0.6341 0.0583 -0.0674 0.0521 -0.0168

(-2.6688, 3.9369) (-0.0586, 0.1752) (-0.2697, 0.1349) (0.0079, 0.0962) (-0.0589, 0.0252)

0.7028 0.3233 0.5085 0.0215 0.4272

Signaling -1.527795 0.02134113 -0.1812032 0.02269972 0.03661695

(-4.7315, 1.6759) (-0.2696, 0.3123) (-0.5179, 0.1555) (-0.0496, 0.0950) (-0.0515, 0.1247)

0.3334 0.8805 0.2764 0.5217 0.3951

Recognition 2.484337 -0.04183397 -0.3390658 -0.009098689 0.006212503

(-2.2566, 7.2253) (-0.39654, 0.3127) (-1.2406, 0.5625) (-0.0857, 0.0675) (-0.2837, 0.2961)

0.2471 0.7825 0.3929 0.781 0.9554

D. simulans
Test statistic

Class θw TajD nFWH EW DoS

Internalization -0.5781 0.0174 -0.0506 0.0587 -0.0203

(-4.8929, 3.7367) (-0.1116, 0.1463) (-0.1939, 0.0927) (0.0213, 0.0961) (-0.0796, 0.0389)

0.7898 0.7889 0.4828 0.0026 0.4939

Signaling -1.909174 0.004127492 -0.04127675 -0.008017493 0.06485741

(-7.1512, 3.3329) (-0.2052, 0.2135) (-0.3457, 0.2632) (-0.0312, 0.0152) (-0.0833, 0.2131)

0.4563 0.9676 0.7802 0.479 0.3687

Recognition 0.9826631 0.03899865 -0.2613483 0.008290816 -0.1259514

(-6.6833, 8.6486) (-0.3190, 0.3969) (-0.7113, 0.1886) (-0.0260, 0.0426) (-0.1647, -0.0872)

0.7706 0.8041 0.2119 0.5852 0.0051

II) Wilcox rank sum test

D. melanogaster
Test statistics

Class θw TajD nFWH EW DoS

Internalization -1.0757 0.0451 -0.0031 0.0146 -0.0208

(-2.8685, 7.8884) (-0.0634, 0.1600) (-0.1889, 0.1821) (-0.0003, 0.0422) (-0.0640, 0.0264)

0.3552 0.3773 0.9927 0.0554 0.351

Signaling -0.8068 0.0061 -0.1739 -0.0014 0.0484

(-3.8097, 1.7032) (-0.2858, 0.2906) (-0.5078, 0.1103) (-0.0170, 0.0128) (-0.0604, 0.1234)

0.4452 0.9881 0.2345 0.7998 0.33

Recognition 2.4427 -0.0111 -0.2327 -0.0114 0.0183

(-2.8685, 7.8884) (-0.4286, 0.2887) (-1.3622, 0.5960) (-0.0851, 0.0586) (-0.3471, 0.2575)

0.2969 1 0.375 0.6875 1

D. simulans
Test statistics

Class θw TajD nFWH EW DoS

Internalization -2.2012 -0.0254 -0.00345 0.0153 -0.0258

(-5.5030, 1.5722) (-0.1224, 0.0989) (-0.1687, 0.1375) (0.0026, 0.0944) (-0.0840, 0.0396)

0.25 0.6902 0.9375 0.0053 0.4788

Signaling -2.437 -0.0239 -0.0657 -0.0052 0.0076

(-7.1538, 2.2012) (-0.2393, 0.2191) (-0.3032, 0.2355) (-0.0230, 0.0204) (-0.0866, 0.1765)

0.2157 0.9187 0.5392 0.4542 0.9323

Recognition 1.0613 0.0682 -0.1791 0.0127 -0.1245

(Continued)
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against null’ test. Individual genes that have potentially undergone adaptive divergence on

each lineage were identified as having a statistically significant (P <0.05) MK test result and a

Direction of Selection (DoS) coefficient >0.

Data

The sequences and the scripts to process them are available in https://github.com/imjoohyu.

Results

Survey of autophagy and phagocytosis genes in D. melanogaster
Autophagy and phagocytosis genes as a whole. To examine whether autophagy and

phagocytosis genes exhibit any signature of recent positive selection, we calculated the follow-

ing summary statistics for each focal gene and its corresponding control genes: Watterson’s

estimator (θw), Tajima’s D (TajD), normalized Fay and Wu’s H (nFWH), Ewens-Watterson’s

homozygosity (EW), and the compound test statistic DHEW. For analyses of longer-term

molecular evolution, we inferred the ancestral state of each substitution using D. yakuba and

D. simulans as outgroups and assuming strict parsimony with no reverse or convergent muta-

tion. We then compared polymorphism and divergence at synonymous and non-synonymous

sites using the MK test [41] and calculated the Direction of Selection (DoS) on each gene. To

determine whether the combined group of all autophagy and phagocytosis genes shows evi-

dence of recent selection or recurrent adaptive evolution, we explored whether the population

genetic statistics of these genes are statistically significantly different from their respective con-

trol genes by calculating the mean of comparison scores for each focal-control gene pairing for

each statistic (Table 1). The only observed significant difference was in the EW statistic

between autophagy and phagocytosis genes and their control genes in D.melanogaster (t-test

p = 0.022, Wilcox test p = 0.055), pointing to the enrichment of low-frequency derived alleles

with an increase in haplotype homozygosity in the focal genes. Randomly assigning control

genes to serve as “focal” genes and repeating the analysis removed this significant difference,

indicating that the pattern of reduced polymorphism is unique to the autophagy and phagocy-

tosis genes. Removing 10% of the genes with the lowest individual P-values and repeating the

analysis still preserved the pattern. Thus, this statistically significant difference between EW
values of focal and control genes is a cumulative effect over the full set of autophagy and

phagocytosis genes and is not driven by a few genes that are strongly divergent from the null

expectation. Contrary to what was observed in autophagy and phagocytosis genes, a set of

humoral signaling genes and a set of recognition genes did not differ significantly from their

control genes in any of the statistics.

Individual autophagy and phagocytosis genes. We tested for signatures of recent selec-

tion in individual genes and only Atg14 and Ykt6 in D.melanogaster had significant test statis-

tics after false discovery correction and extreme comparison scores (Table 2). Atg14 (D =

-1.926, p = 0.048, EW = 0.06, p = 0.013) encodes an endoplasmic reticulum (ER) protein that

Table 1. (Continued)

(-7.7041, 10.2197) (-0.3824, 0.3882) (-0.7856, 0.1794) (-0.0255, 0.0535) (-0.1436, -0.1142)

0.8438 0.7422 0.3125 0.4606 0.25

θw, Watterson’s θ; TajD, Tajima’s D; nFWH, normalized Fay and Wu’s H; EW, Ewens-Watterson statistic; DoS, Direction of Selection; For a given statistic, each value

represents the mean (t-test) or pseudomedian (Wilcox) of comparison scores for each focal-control gene pairing and the values in parenthesis are the 95% confidence

intervals with an associated P-value below. Significant deviation is bolded.

https://doi.org/10.1371/journal.pone.0205024.t001
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helps autophagosomes nucleate [44]. The Atg14 comparison score for D was the largest and for

H was in the top 5% among 71 gene pairs surveyed (Table 2). These observations can be attrib-

uted to natural selection because effects of chromosomal position or demographic history

would also be expected to impact the control genes. Ykt6, a SNARE protein involved in inter-

nalization of particles during phagocytosis and expansion of the autophagosome membrane

[45, 46], showed significant P-values for D and EW (D = -2.151, p = 0.027, EW = 0.552,

p = 0.001). The D comparison score for Ykt6was the 5th largest in the D.melanogaster data

set, illustrating the enrichment of low-frequency variants specifically at this locus (Table 2). In

addition, CD36 scavenger receptors emp and pes [47–49], autophagy gene Atg16, and phagocy-

tosis gene, Rac2, showed significant EW and DHEW statistics but did not meet the multiple

testing correction threshold (Table 1). Next, we looked for evidence of recurrent adaptive evo-

lution in individual autophagy and phagocytosis genes. While Ird1 showed significant MK test

results even after multiple testing correction (<0.05), the DoS value for each of these genes was

negative and was not drastically different from its control genes according to the DoS compari-

son score. This result indicates that slightly deleterious mutations are segregating at these loci

(S1 Table) and provides no support for recurrent adaptive amino acid substitution.

Survey of autophagy and phagocytosis genes in D. simulans
Autophagy and phagocytosis genes as a whole. We tested whether phagocytosis and

autophagy pathways as a whole show distinct patterns of sequence evolution compared to con-

trol genes in D. simulans. As was the case in D.melanogaster, the significant difference between

D. simulans phagocytosis and autophagy genes and their control genes was seen in the EW

Table 3. Genes that show significant and nominal evidence of amino acid divergence on the D. melanogaster lineage and on the D. simulans lineage.

D. melanogaster
Gene ID Gene

Name

Pn Dn Ps Ds MKcodons Function FETpval FET

corrected

DoS DoS rank DoS rank

against null

rank

FBgn0260935 Ird1 30 1 47 59 1119 Autophagy/Phagocytosis: Phagosome

maturation; autophagosome

nucleation

<0.001 <0.001 -0.372943723 17

(26.15%)

39 (16.46%)

D. simulans
Gene ID Gene

Name

Pn Dn Ps Ds MKcodons Function FETpval FET

corrected

DoS DoS rank DoS rank

against null

rank

FBgn0189637 gb 4 7 53 8 447 Phagocytosis: Phagosome

maturation

0.001 0.047 0.396 51

(100%)

179 (95.21%)

FBgn0187055 polyph 3 4 47 5 320 Phagocytosis: Phagosome maturation 0.008 0.138 0.384 47

(92.16%)

173 (92.02%)

FBgn0182861 scb 11 12 75 21 814 Phagocytosis: Recognition—receptor 0.008 0.138 0.236 49

(96.08%)

174 (92.55%)

FBgn0045586 Rbsn-5 4 4 45 4 397 Phagocytosis: Phagosome maturation 0.010 0.142 0.418 50

(98.04%)

178 (94.68%)

Pn, the number of non-synonymous polymorphisms; Dn, the number of non-synonymous substitutions; Ps, the number of synonymous polymorphisms; Ds, the

number of synonymous substitutions; MKcodons, the total number of codons subjected to the MK test; FETpval, P-value from Fisher’s exact test; FET corrected, P-

value from Fisher’s exact test with multiple testing correction; DoS, direction of selection; For each focal-control pair, comparison score was calculated for DoS and the

scores were ranked from largest to smallest in the ‘rank’ column. Random assignment of a control gene to be “focal” and re-calculating the ranks of comparison scores

created a distribution of ranks. The ranks of comparison scores from true coupling of focal and control genes compared to this distribution are listed in the ‘rank against

null’ column.

https://doi.org/10.1371/journal.pone.0205024.t003
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statistic (t-test p = 0.003, Wilcox test p = 0.005, Table 1). Randomly re-assigning a control gene

to be “focal” eliminated this significant difference, suggesting that the observed pattern is

attributable to phagocytosis and autophagy genes. Again, consistent with the patterns in D.

melanogaster, the statistically significant difference between EW values of focal and control

genes is not due to a few divergent genes, but rather is a pattern seen across all genes. While

humoral immune signaling genes in D. simulans did not differ significantly from their control

genes in any of the statistics, the DoS statistic for recognition genes showed deviation from

that of respective control genes according to the t-test (p = 0.005; Table 1). This trend was

largely driven by the fact that only three gene pairs existed in this category and that the DoS

values of four out of ten corresponding control genes are highly positive (>0.2).

Individual autophagy and phagocytosis genes. We tested for signatures of recent selec-

tion in individual genes in D. simulans. While four genes, Rab1, Atg8b, Vamp7 and Rac1
(the first three are involved in both phagocytosis and autophagy pathways, whereas the last

is implicated only in phagocytosis) showed nominally significant D, EW, and DHEW statis-

tics, none remained significant after the multiple testing correction. When we compared

polymorphism and divergence at synonymous and non-synonymous sites using the MK

test to test for recurrent adaptive amino acid substitution along the D. simulans lineage, we

found that only gb had significant MK test results after the multiple testing correction and a

positive DoS value (MK corrected FET p = 0.046, DoS = 0.396, Table 3) The DoS compari-

son score for gb also ranked the highest when compared to other gene pairs (Table 3). gb
encodes a glutamate transporter that regulates the extracellular glutamate levels in the ner-

vous system [50] and controls internal ROS and to promote phagosome maturation [51].

The other glutamate transporter polyph [50, 51], as well as phagocytic receptors pes and scb
[49, 52], and Rbsn-5, which facilitates phagosome maturation [2], also showed nominally

significant MK results that did not meet the multiple testing correction threshold (Table 3).

We identified no autophagy genes evolving with an elevated rate of amino acid substitution

along the D. simulans lineage.

Discussion

Dynamic conflict between hosts and pathogens may result in co-evolutionary adaptation in

host genes, resulting in signatures of positive selection. Previous work to understand the

molecular evolutionary patterns of immune genes in Drosophila has enriched our understand-

ing of how the innate immune system has evolved. However, most population genetic studies

on innate immunity have so far focused on the humoral immune response genes and phago-

cytic receptor genes, so the evolution of most of cellular immunity remains to be understood.

In this study, we examined molecular evolutionary patterns of autophagy and phagocytosis

genes in D.melanogaster and D. simulans. We found that phagocytosis and autophagy path-

ways as a whole showed an elevated level of haplotype homozygosity in both species, suggest-

ing that genes in these pathways demonstrate small indications of adaptation that collectively

result in a statistically measurable deviation from neutrality. The EW test statistic is more pow-

erful for detecting a very recent selective sweep compares to other tests [53]. The aggregate sig-

nificance of the EW test would therefore seem to indicate that many autophagy and

phagocytosis genes have been targets of recent sweeps, but that the pattern has not persisted

over enough evolutionary time to leave signatures detectable by other test statistics. It is

unclear what biological scenario would trigger a widespread set of recent sweeps, although eco-

logical shift or invasion of a novel pathogen is possible. We identified several individual genes

that exhibit indications of positive selection, although only a subset of them were statistically

significant after controlling for multiple testing.
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Positive selection on autophagy genes

We looked for signatures of natural selection in autophagy genes, which have both defensive

and housekeeping roles. Besides removal of pathogens, autophagy degrades damaged host pro-

teins and organelles to recycle nutrients during stressful conditions, such as starvation [5].

The core autophagy machinery is conserved from yeast to higher eukaryotes [4]. The role of

autophagy in maintaining organismal homeostasis could act as a constraint on adaptation in

response to pathogen pressure, which might explain why we did not see pervasive signatures

of positive selection in autophagy genes of either D.melanogaster or D. simulans. However, we

did identify signatures of recent positive selection in Atg14 and Ykt6, which remained signifi-

cant after multiple testing correction in D.melanogaster. Atg14 is conserved in both Drosophila
and mammals and is involved in the nucleation of phagosphore membrane [3]. Upon infecting

mouse and human cell lines, the intracellular bacterium Brucella abortus forms a Brucella-con-

taining vacuole using the host proteins Atg14 and Beclin-1, the mammalian homolog of Atg6,

in order to be trafficked to the ER where the bacterium proliferates [54]. Similar interactions

with pathogens may have led to Atg14 adapting to play a more specific role in immune defense

and to our observed evolutionary pattern in D. melanogaster. While the test statistics of Atg16
did not meet the multiple testing correction threshold, its nominally significant test statistics

indicate that it may have experienced a strong selective pressure because it is responsible for

removing both intra- and extracellular pathogens [54].

Positive selection on glutamate transporters

We also identified a glutamate transporter gene, gb, to have elevated amino acid sequence

divergence on the D. simulans lineage (Table 3). gb encodes a transporter that controls the

extracellular glutamate levels in the nervous system [51]. When gb is mutated, glutamate level

in the hemolymph is reduced, synthesis of glutathione (a major antioxidant) is disrupted, and

the intracellular ROS is increased [55], leading to a failure in producing mature phagosomes

and in phagocytosis of Staphylococcus aureus in Drosophila [51]. Another putative glutamate

transporter gene polyph that also plays a role in regulating glutamate level showed a significant

MK result prior to multiple testing correction [51]. Although it is unknown whether these pro-

teins physically interact with each other, both genes are expressed in Drosophila blood cells

and share a function [51]. Due to this shared function and evolutionary pattern, it is tempting

to speculate that positive selection may be acting on these proteins together. A host protein

that evolves to escape pathogen interference may also evolve away from its native function

within the host. Thus, compensatory mutation in interacting proteins that restore full function

could become adaptive [56].

Positive selection on recognition genes in phagocytosis

Opsonins and phagocytic receptors have been hypothesized to evolve under host-pathogen co-

evolution because they directly bind to molecules from pathogens in order to promote phago-

cytosis [57–61]. Previous research reported that emp, pes, and scb, which encode phagocytic

receptors that bind to pathogens bore evidence of recent and adaptive evolution in Drosophila
[58, 59, 62]. TepII, TepIV (opsonin), Sr-CI (scavenger receptor) and nimrod genes (NimC1,

NimB4) also show an excess of non-synonymous fixations between D. melanogaster and D.

simulans in [57–59]. While emp and pes in D.melanogaster and pes and scb in D. simulans in

this study showed some indication of selection, the test statistics were not significant after mul-

tiple testing correction. These distinctions between previous studies and the present one may

be due to differences in methods since our method employed a composite method in addition

to typical test statistics used in the field to determine significance.
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No parallel adaptation between D. melanogaster and D. simulans
One objective of this study was to evaluate whether the same genes in D.melanogaster and D.

simulans show similar patterns of non-neutral evolution as a test for parallel adaptation. How-

ever, we did not find evidence for parallel adaptation at the gene level. While D.melanogaster
and D. simulans are closely related species, the locations in which they were collected, their

ecology, and their demographic histories differ [63]. While D.melanogaster and D. simulans
are known to share some viruses, such as the Galbut Virus [64], there is no information about

whether they share any bacterial pathogens in the wild and it is reasonable to suppose they

may generally be exposed to different pathogens because of difference in micro- or macro-

ecology. If these distinct pathogens interact differently with the two host species, then parallel

adaptation may be unlikely. It is important to note that detection of parallel evolution relies on

the detection of statistically significant patterns in both species. Thus, they may be under-

detected if the analysis has low statistical power. In our particular study, the number of lines

sampled from each species differed, so the power to detect selection was not equivalent across

the species. Nevertheless, our finding is consistent with previous reports suggesting that paral-

lel adaption is not common. For example, a previous study noted that while selective sweeps

affect antiviral pathways in many insect species, the affected genes varied considerably across

species [65]. Another study reported that a humoral signaling gene, Relish, known to have

undergone adaptive divergence in D. simulans, did not exhibit as strong of evidence of natural

selection in three other sister species [66].

Soft sweeps and balancing selection

Our study mainly focused on detecting strong signatures of natural selection, as would be

expected from hard selective sweeps favoring novel mutations [67], and on recurrent adaptive

amino acid substitutions in a gene [41, 68]. These are the signatures expected from classic

arms race model, which was our core biological hypothesis. We have less power to detect other

forms of adaptation that might act on immune system genes, including soft sweeps of adapta-

tion from standing genetic variation and balancing selection. Soft sweeps refer to a mode of

adaptation where multiple distinguishable adaptive alleles are present in the population at the

same time [69]. Soft sweeps may be common in D.melanogaster [70, 71] but are not easily

detected by frequency-based statistics such as Tajima’s D or Fay and Wu’s H because genetic

diversity is not as severely reduced when the selected site is on multiple haplotype backgrounds

or is not driven to complete fixation [72]. A previous study that looked for genes evolving via

soft sweeps in D.melanogaster [71] showed evidence for soft sweeps in chromosomal regions

that include Vamp7 and Sr-CII, which did not show statistically significant results in our study,

although the precise targets of these sweeps remain unidentified.

In the context of host-pathogen interactions, balancing selection can theoretically be gener-

ated if polymorphisms arise at co-evolving loci of both hosts and pathogens and two or more

alleles are maintained at static intermediate or oscillating frequencies, or if alleles are costly in

the absence of infection so cannot be driven to fixation [11, 73–75]. The genomic signatures of

balancing selection can be detected in organisms whose breeding structures or population

sizes result in linkage disequilibrium that extends over long physical stretches of chromo-

somes, such as Arabidopsis [73, 76] and humans [77, 78]. However, it is much more difficult to

detect balancing selection in organisms like D.melanogaster that have large population sizes

and high rates of recombination [79, 80]. Therefore, we cannot rule out the possibility that

some components of autophagy and phagocytosis systems in Drosophila may have evolved

under undetected balancing selection.
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