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Understanding the rate of evolutionary change and the genetic architecture that

facilitates rapid adaptation is a current challenge in evolutionary biology. Com-

parative studies show that genes with immune function are among the most

rapidly evolving genes across a range of taxa. Here, we use immune defence

in natural populations of Drosophila melanogaster to understand the rate of evol-

ution in natural populations and the genetics underlying rapid change. We

probed the immune system using the natural pathogens Enterococcus faecalis
and Providencia rettgeri to measure post-infection survival and bacterial load

of wild D. melanogaster populations collected across seasonal time along a lati-

tudinal transect along eastern North America (Massachusetts, Pennsylvania

and Virginia). There are pronounced and repeatable changes in the immune

response over the approximately 10 generations between spring and autumn

collections, with a significant but less distinct difference observed among geo-

graphical locations. Genes with known immune function are not enriched

among alleles that cycle with seasonal time, but the immune function of a

subset of seasonally cycling alleles in immune genes was tested using recon-

structed outbred populations. We find that flies containing seasonal alleles in

Thioester-containing protein 3 (Tep3) have different functional responses to infec-

tion and that epistatic interactions among seasonal Tep3 and Drosomycin-like 6
(Dro6) alleles underlie the immune phenotypes observed in natural popu-

lations. This rapid, cyclic response to seasonal environmental pressure

broadens our understanding of the complex ecological and genetic interactions

determining the evolution of immune defence in natural populations.

1. Introduction
The rate at which populations respond to environmental change is a fundamental

parameter in the process of adaption. Evolution is historically considered to be an

innately slow process that occurs over very long time scales [1], but there are now

examples that evolutionary change can occur much faster [2–4]. The limits of how

fast populations evolve and the genetic architecture underlying rapid evolution

remain unclear [5]. The classical approach to infer adaption through the associ-

ation of traits and genotypes that covary along spatial environmental gradients

(e.g. latitude, longitude and altitude) [6] can be expanded across temporal

environmental gradients to provide insights to the rate of adaption in the wild.

Biotic environment may shape the rate of adaptation through the immune

system, which sits at the crucial interface between an organism’s external and

internal environment. Strong selection imposed by pathogens may result in rapid
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evolution of immune defence in nature, because microbiotic

infection directly affects host fitness, with consequences ranging

from resource reallocation to host mortality [7–13]. Comparative

studies across a broad range of taxa indicate that genes with

immune function are among the most rapidly evolving genes

in the genome [14–19]. Drosophila melanogaster immune genes

show evidence of local adaptation across large spatial gradients

with high levels of population differentiation and latitudinal

enrichment across multiple continents [20–23]. There is less evi-

dence for immune differentiation at small spatial scales [24,25],

although some screens of infection response in D. melanogaster
indicate continental differences in defence quality [24]. Thus,

immune defence in natural populations of D. melanogaster
represents a tractable system to study the rate of evolution.

We predicted seasonal variation in D. melanogaster immune

defence even in the absence of established clinal differences in

performance. Seasonal climatic changes produce predictable

environmental gradients over time that select for different phe-

notypes [26,27] and allele frequencies [28,29] in multivoltine

organisms like D. melanogaster. Abiotic variables (e.g. tempera-

ture) that cycle across seasons can influence microbial growth,

so microbial communities and pathogen diversity that vary

over spatial gradients [30–36] may also change across seasonal

time [37–40]. Seasonal differences in pathogen diversity and

frequency may select for immune resistance or tolerance in

either or both of the primary humoral immune pathways: the

Toll pathway that is preferentially activated by Gram-positive

bacteria or the IMD pathway that is primarily activated by

Gram-negative bacteria [41].

We tested whether innate immunity evolves seasonally in

mid-Atlantic D. melanogaster populations in North America

(Massachusetts, Pennsylvania and Virginia). We found that

immune defence changes rapidly and repeatedly from spring

to autumn, and seasonally cycling alleles of immune genes

determine seasonal variation in resistance to and tolerance of

infection. We show that epistatic interactions among seasonally

cycling SNPs produce the immune phenotypes observed in

natural populations. This rapid, cyclic response to seasonal

environmental pressure broadens our understanding of the

complex ecological and genetic interactions determining the

evolution of immune defence in natural populations.
2. Material and methods
(a) Drosophila samples
Wild D. melanogaster were collected by aspiration in early July

(spring population) and late October (autumn population) repeated

across 2 years at three locations spaced evenly along a 48 latitudinal

gradient: George Hill Orchard in Lancaster, MA (42.5004938 N,

271.5635808 E), Linvilla Orchards in Media, PA (39.8841798 N,

275.4112278 E) and Carter Mountain Orchard in Charlottesville,

VA (37.9918518 N, 278.4716308 E). Isofemale lines were established

from wild-caught inseminated females and were maintained on

standard cornmeal molasses food in standard laboratory con-

ditions (258C, 12 L : 12 D) on a three-week transfer cycle for six to

eight generations before immune assessment.

We screened a published dataset of SNPs that oscillate in these

populations across seasonal time [29] for genes with known

immune function [42] to identify candidate seasonal immune

SNPs. The immune function of these SNPs was assessed using

recombinant outbred populations (ROPs) [43] fixed for specific

seasonal allele combinations in a randomized genetic background

that were constructed using lines from the Drosophila Genetics
Reference Panel (DGRP) [44]. Ten gravid females from 15 lines

were pooled to lay eggs for 48 h for each combination of seasonal

alleles (electronic supplementary material) and the offspring

mated freely for at least 10 non-overlapping generations before

immune assessment. The immune function of the two SNPs

in Thioester-containing protein 3 (Tep3) was tested using three geno-

types that combined 2 L:7703202 and 2 L:7705370 (D. melanogaster
reference genome v.5.39) spring and autumn alleles: (i) Tep3TG con-

tained spring alleles for both 2 L:7703202 and 2 L:7705370,

(ii) Tep3TT contained the spring 2 L:7703202 and the autumn

2 L:7705370 modifier allele, and (iii) Tep3CT contained autumn

alleles for both SNPs. The final combination of the autumn

2 L:7703202 coding allele and the spring 2 L:7705370 modifier

allele was too rare in the DGRP to create ROP. Two independent bio-

logical replicate populations were created for each of the three Tep3
genotypes. Epistatic interactions between Tep3 and either Fas-associ-
ated death domain (Fadd) or Drosomycin-like-6 (Dro6) were assessed in

the same way with ROP fixed for either both spring or autumn Tep3
alleles and either Fadd or Dro6 alleles.

(b) Immune measurements
Quality of immune defence was probed using systemic bacterial

infection [45] with Gram-negative Providencia rettgeri [46] and

Gram-positive Enterococcus faecalis [47] strains that were originally

isolated from infected wild-caught D. melanogaster. Post-infection

survival was measured in males 3–5 days over two repeated

blocks of five consecutive days after infection. Mortality was high-

est in the first 24 h and plateaued (electronic supplementary

material, figure S1), so the final mortality 5 days post-infection

was analysed in the model. Flies were infected with cultures started

with a single colony grown to saturation in LB media at 378C with

shaking overnight and diluted to A600nm of 1.0. Infections were

delivered at a dose of 103–104 bacteria to each CO2-anaesthetized

fly by inoculating the lateral thorax with a 0.15 mm minutien pin

(Fine Scientific Tools) dipped into bacterial culture [45]. Two con-

trols were used: a sterile wound by a needle disinfected in 95%

ethanol and unwounded flies anaesthetized on CO2.

Systemic bacterial load of infected flies was quantified using

the same infection method described above for infection survival.

When evaluating the natural populations, 20 lines from each of the

collection were infected during a daily infection window (09.00–

12.00). All infections were repeated over two consecutive days by

two infectors with infector and infection order randomized

daily. Twelve males from each line were infected and maintained

with food at 258C, 12 L : 12 D for 24 h post-infection. Up to three

replicate groups of three flies were homogenized in 500 ml of LB

for the 2012 natural populations, and up to three single flies were

homogenized in 500 ml of PBS for the 2014 natural and ROP.

The samples were then plated on LB agar plates at 1 : 100 dilution

for P. rettgeri, 1 : 10 for E. faecalis in natural populations and 1 : 1 for

both bacteria in ROP using the Whitley Automatic Spiral Plater

(Don Whitley Scientific, Shipley, UK). The plates were incubated

overnight at 378C, and the number of colony-forming units was

counted using the ProtoCOL3 automated plate counter (Synbiosis,

Cambridge, UK) and used to calculate the concentration of bacteria

in each homogenate.

(c) Gene expression
Expression levels of Tep3, Dro6 and Fadd were determined using

a published dataset of RNAseq on 185 inbred sequenced lines

from the DGRP [48]. We extracted expression of Tep3, Dro6 and

Fadd for each inbred line and used sequence data [44] to identify

Tep3, Dro6 and Fadd haplotype.

(d) Statistical analyses
Statistical analyses were performed using R software (v. 3.2.2; R

Core Team). Post-infection survival was measured daily and

http://rspb.royalsocietypublishing.org/
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survival 5 days post-infection was analysed using a binomial

linear regression. Survival post-infection was evaluated using

the model:

survival ¼ year� population� seasonþ lineþ replicate:

Population, year and season were considered fixed effects,

and replicate and line were random effects nested within

season, population and year. Mean survival post-infection was

standardized by survival under sterile wound control.

Concentration of bacteria in each homogenate was calculated

using the number of colonies log-transformed and analysed

using mixed-model ANOVAs:

log10ðcount/mlÞ ¼ year� population� seasonþ line

þ replicate:

Population, year and season were fixed effects, and replicate

and line were random effects nested within season, population

and year. Infector and infection order were initially included in

model but had no significant effect and were removed.

(e) Seasonal SNPs
Seasonal immune SNPs were identified by screening a published

dataset for alleles that fluctuate in frequency as a function of

seasonal time [29] in 88 genes known to have immune function

[49]. Seasonal SNPs were cross-referenced with a group of paired

spring and autumn samples collected from 10 populations along

the North American cline by the Drosophila Real Time Evolution

Consortium (NCBI SRA BioProject PRJNA308584 [29,50]).

Additional information collected on each SNPs included clinal q-

value [29] and p-value in a genome-wide association study to

identify SNPs involved with P. rettgeri pathogenic infection [51].

Enrichment for immune genes was calculated using customized

python scripts that compared the proportion of seasonal and

non-seasonal immune genes with control genes that were matched

for size and position using x2 with 10 000 bootstrap iterations.

Linkage disequilibrium (LD) among the candidate seasonal

immune SNPs was calculated in the DGRP using allelic correlation

of physical distances using the LDheatmap package [52] in R. The

205 sequenced inbred lines of the DGRP were used to examine LD

among all of the candidate SNPs by chromosome [44].

( f ) Seasonal genotypes
Genotypes from wild populations were determined using inbred

lines originally collected in Pennsylvania in the spring and

autumn of 2012. The lines were inbred by full-sib mating for 20 gen-

erations and subsequently sequenced (NCBI SRA BioProject

PRJNA383555). Genotype deviation was calculated as the difference

between observed frequency and a predicted frequency based on

the individual alleles. Haplotype distribution of Tep3 was calculated

for SNPs with a minor allele frequency greater than 0.1 using integer

joining networks [53] in POPART v. 1.7 [42].
3. Results
(a) Geographical differences in immunity
Geographical origin across the latitudinal transect determined

survival post-infection, but did not predict systemic bacterial

load sustained by flies infected with either pathogen. While

survival after P. rettergi infection directly depended on the

latitude (x2
ð2Þ ¼ 12:805, p ¼ 5.87 � 1024), the interaction between

geographical origin and season of collection affected survival

after E. faecalis infection (x2
ð2Þ ¼ 10:035, p ¼ 6.62 � 1023). The

lower-latitude Virginia population had higher survival after

E. faecalis infection in the spring but no difference in

the autumn (figure 1a,b). High-latitude Massachusetts and
Pennsylvania populations had similar load and survival

after P. rettgeri infection and exhibited a greater seasonal

change in both survival and bacterial load compared with

the lower-latitude Virginia population (figure 1c,d ).

(b) Immunity changes rapidly within a population over
seasonal time

Immune defence changed rapidly across approximately 10 gen-

erations in the wild from spring to autumn with a pathogen-

specific relationship between bacterial load and survival

(figure 1). Spring populations were more resistant to E. faecalis
bacterial growth (F1,219 ¼ 87.758, p , 0.0001) and maintained

low load with marginally higher survival rates (x2
ð1Þ ¼ 3:201,

p ¼ 7.36� 1022), while the autumn populations infected with

the same bacteria did not restrict bacterial growth as effectively,

resulting in high load and high mortality (figure 1a,b). The con-

verse relationship occurred when flies were infected with

P. rettgeri: higher survival in spring (x2
ð1Þ ¼ 16:145 , p ¼ 5.87 �

1024) despite higher bacterial load (F1,215 ¼ 7.88, p , 0.0001)

and high mortality in autumn even though the bacterial

growth was restricted (figure 1c,d ). There is a general consist-

ency of the patterns from spring to autumn, but the annual

variation in the environment results in year and year-

by-month interaction as significant factors contributing to

survival after infection with E. faecalis (year: x2
ð1Þ ¼ 33:80,

p ¼ 6.10 � 1029; year �month: x2
ð1Þ ¼ 7:05, p ¼ 7.94 � 1023)

and P. rettgeri (year: x2
ð1Þ ¼ 39:98, p ¼ 2.57 � 10210; year �

month: x2
ð1Þ ¼ 11:70, p ¼ 6.23 � 1024) .

(c) SNPs in immune genes oscillate across
seasonal time

Immune genes as a functional category were not enriched

among genes carrying polymorphisms that oscillate in fre-

quency over seasonal time in these populations [29] when

compared with controls matched for size and position using

previously published data. Twenty-four candidate SNPs oscil-

lated in frequency across seasonal time in these populations

[29] located within or in proximity to 13 genes with known

involvement in immune function [54] (electronic supplementary

material, table S1; table 1 and figure 2a).

(d) Seasonally oscillating Tep3 SNPs have functional
differences in immunity

Over one-third of the seasonally variable SNPs near immune

genes were near Tep family genes, with Tep homologues

comprising one-fourth of all of the seasonally variable

immune genes. Tep3 contained numerous seasonally oscillat-

ing loci with high LD across the 2.5 kb region in which the

seasonal alleles are located in the DGRP (figure 2a,b,c).

We tested the function using ROP with two loci as markers:

the non-synonymous-coding change at 2 L:7703202 that is

surrounded by five intronic seasonal SNPs and the intronic

SNP 2 L:7705370 that is 2 kb downstream from the cluster

(D. melanogaster reference genome v. 5.39). These markers are

in LD in the DGRP (r2 ¼ 0.8138) and cycle independently

across seasonal time (electronic supplementary material,

table S1; figure 2c), but neither allele varies along a cline (elec-

tronic supplementary material, table S1). Alleles at

2 L:7703202were non-randomly distributed with respect to

karyotype: in both DGRP and Pennsylvania populations

that the autumn allele (C) was strongly associated with

http://rspb.royalsocietypublishing.org/
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In(2 L)t. By contrast, the spring allele (T) occurred mostly

in a standard arrangement genetic background (Fisher’s

exact test; p , 0.0001). 2 L:7705730 had no significant associ-

ation with either arrangement of In(2 L)t (Fisher’s exact

test; p ¼ 0.161).

There was no difference among the Tep3 ROP in bacterial

load, but there was differential survivorship after infection

with both Gram-positive and Gram-negative pathogens. Flies

containing the spring Tep3TG haplotype had higher survival

than those containing the autumn Tep3CT or mixed Tep3CG

haplotypes when infected with Gram-positive E. faecalis
(x2
ð2Þ ¼ 6:73, p ¼ 0.0346; figure 3a).The Tep3 SNPs are associ-

ated with an additive effect on survival of Gram-negative

P. rettgeri infection with higher survival in flies containing

the autumn haplotype than those containing the spring haplo-

type and intermediate survival in flies containing the mixed

haplotype (x2
ð2Þ ¼ 3:651, p ¼ 0.161; figure 3b). Flies containing

the seasonal Tep3 haplotypes have no difference in Tep3
expression in the absence of infection (F3,360 ¼ 1.419, p ¼
0.239, figure 3c) based on previously published RNAseq

expression of the DGRP lines [48]. The Tep3TG haplotype

containing spring alleles occurred at higher in the spring

Pennsylvania population compared with the autumn, while
the Tep3CT haplotype containing autumn alleles increased in

frequency from spring to autumn (figure 3d,e). There were

two primary sequence haplotypes carrying spring Tep3TG var-

iants and two sequence haplotypes carrying the autumn

Tep3CT variants in the Pennsylvania orchard (figure 3f;
electronic supplementary material, table S1).

(e) Epistasis among AMP genes involved in rapid
seasonal adaptation

We tested whether additional seasonal SNPs in the immune

pathways interact with Tep3 to facilitate rapid immune evol-

ution across seasons: 3 L:3334769, an upstream modifier of

Drosomycin-like 6 (Dro6), that was shown to significantly affect

resistance to P. rettgeri in a genome-wide association study

[51] and 3R:17861054, a 30-UTR modifier in the signalling

gene Fas-associated death domain orthologue (Fadd), which was

the only SNP with concordant patterns between season and lati-

tude (figure 2a and table 1). There was no difference in immune

defence among ROP combinations of Tep3 and Fadd, but the

non-additive interactions among ROP containing Tep3 and

Dro6 alleles begin to explain the complexity of immune defence

of natural populations (figure 4).
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4. Discussion
(a) Natural populations differ in immunity over

geographical space and across seasonal time
Immune response differs among populations across space

and time. Season of collection is a strong predictor of the

immune response across geographical locations that span 48
latitude with a seasonal decline in resistance to E. faecalis
and a seasonal decline in tolerance of P. rettgeri. The change

in immunity across seasonal time occurs rapidly within

each geographical location with approximately 10 generations

between spring and autumn collections. Repeated seasonal

change in immune defence is consistent with previous find-

ings for other measurements of stress resistance [26,27].

Taken together, this suggests that a harsh winter selects for

a suite of traits that produce a robust spring population

and selection on those traits is relaxed during summer produ-

cing less stress resistant populations in autumn.

Although the strongest differentiation of immunity

occurred across seasonal time, there was also a signal of

geography along the sampled spatial gradient. Our results

contrast with previous studies that did not detect a robust

association between latitude and survival [55] or load [24,49].

The difference may be attributed to the interaction between

season and latitude. It is possible that geographical differences

in immune response may be even greater across a longer dis-

tance that may capture a larger difference in pathogen

diversity [30–36,56]. In addition, there was secular change in

post-infection survival but not in bacterial load, which may

be caused by year-to-year differences in the microbial
community of the environment that result in different allele

frequencies in genes with immune function.

The repeatabilityof the general patterns of change in immune

defence across space and time indicates deterministic evolu-

tionary processes. Rearing lines for multiple generations in a

common laboratory environment distinct from external sample

sites removes environmental variation and ensures that differ-

ences among collections and populations can be attributed

to genetic diversity among source populations. It is possible

that gene flow due to migration from other latitudes contributes

to the differences between spring and autumn populations.

However, migration is unlikely to be the primary cause

underlying seasonal immune differences, because latitudinal

differentiation was weak compared to seasonal change. Further-

more, infection with different pathogens resulted in opposing

clinal patterns but parallel change across seasons. Additionally,

migration alone appears insufficient to explain genome-wide

differences in allele frequency profiles that characterize spring

and autumn populations in Pennsylvania orchard [29]; thus,

migration is unlikely to explain the seasonal differences in

immune response. Wild Drosophila populations live in a hetero-

geneous environment and evolve rapidly in response to

environmental parameters that change with season [26,27],

potentially including rapid turn-over in microbial and pathogen

communities (electronic supplementary material, figure S2).

(b) SNPs in immune genes oscillate across seasonal
time

Changes in immune defence are at least in part due to

differences in genes with immune function across space and

http://rspb.royalsocietypublishing.org/
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time. Genomic screens show that immune genes are enriched

across latitudinal gradients [20–23], but we did not find enrich-

ment among immune genes in SNPs that cycle in frequency

with season. Seasonal differences in immunity could arise

from variation in genes not classically identified as part of the

immune system and were not detected from our screen. How-

ever, the D. melanogaster immune system is well characterized

and changes in even a single immune gene could affect pheno-

typic response to infection even without enrichment for all

immune genes. Alternatively, immune changes may be con-

trolled by non-additive genetic interactions that would not be

identified in enrichment analysis.

(c) Immune survival of flies containing seasonally
oscillating Tep3 haplotypes

Immune responses in the ROP were consistent with the sea-

sonal patterns in natural populations: spring populations

and flies containing the spring Tep3 haplotype had a

higher defence against Gram-positive E. faecalis, whereas

autumn populations and flies containing the autumn

Tep3 haplotype had higher defence against Gram-negative

P. rettgeri. Opposite survival patterns for flies with spring

and autumn Tep3 haplotypes are consistent with antagon-

istic pleiotropy [57] operating across distinct branches

of the immune system, limiting the host such that

improvements in response to one class of pathogens (e.g.
Gram-negative bacteria) restrict the ability to respond to

other pathogens (e.g. Gram-positive bacteria). Trade-offs

within the immune system occur in several insect systems

between humoral antimicrobial peptides that combat

microbial infections and phenoloxidase that is deployed

against eukaryotic parasites [58–60] as well as in the

T-helper cells of the vertebrate immune system (reviewed

in [61]). We hypothesize that genetic variation for allocation

to either immune activity may be maintained if the risk of

pathogenesis changes over space or time. Additivity

among the loci in response to P. rettgeri, but a non-additive

response to E. faecalis, suggests that the autumn allele at

2 L:7705370, or genetic variants linked to it, has a dominant

effect that decreases survival to E. faecalis infection.

Our data suggest that these Tep3 loci are natural variants in

immune tolerance, because flies containing the haplotypes

with the same infection load had differential survivorship.

The molecular function of the seasonal loci in Tep3 remains

unclear. Tep proteins are a-macroglobulin protease traps that

bind to pathogen surface and act as opsonins [62–64]. The

polymorphism at 2 L:7703202 produces a non-synonymous

Ala/Val polymorphism at residue 18, but both amino

acids are hydrophobic. The intronic SNP at 2 L:7705370 is

directly upstream of the exon cassette region and may regulate

expression, but Tep3 is constitutively expressed and not

strongly induced by E. faecalis or P. rettgeri infection [65,66].

Therefore, the SNPs we examined may most appropriately be

http://rspb.royalsocietypublishing.org/


Table 1. Seasonal immune SNPs identified using whole-genome resequencing of the Pennsylvania spring and autumn populations across three consecutive
years. SNPs with a seasonal q-value (SQ),0.3 are classified as seasonal and the SNPs investigated here are in bold. Most of seasonal SNPs do not have
significant clinal q-values (CQ) and were not significant in a genome wide association study (GWAS) for response to P. rettgeri pathogenic infection [52].

gene position effect molecular function SQ CQ GWAS

Tep2 2 L:2834400 upstream modifier effector 0.242 0.956 0.253

Tep3 2 L:7703202 NS coding effector 0.243 0.159 0.420

Tep3 2 L:7703509 upstream modifier effector 0.151 0.529 0.084

Tep3 2 L:7703518 upstream modifier effector 0.220 0.643 0.084

Tep3 2 L:7703748 upstream modifier effector 0.271 0.819 0.114

Tep3 2 L:7703757 upstream modifier effector 0.291 0.956 0.632

Tep3 2 L:7705370 upstream modifier effector 0.219 0.163 0.385

bsk 2 L:10247834 intron signalling 0.300 0.822 0.255

bsk 2 L:10252450 intron signalling 0.257 0.749 0.962

Tep1 2 L:15887030 downstream modifier effector 0.227 0.188 0.089

Tep1 2 L:15888031 downstream modifier effector 0.221 0.520 NA

cact 2 L:16309682 downstream modifier signalling 0.135 0.782 0.829

cact 2 L:16310896 downstream modifier signalling 0.235 0.635 0.375

cact 2 L:16318067 intron signalling 0.281 0.719 0.335

sick 2 L:19923496 intron signalling 0.232 0.032 0.505

IM1 2 R:14270817 upstream modifier effector 0.256 0.695 0.423

Dro6 3 L:3334769 upstream modifier effector 0.201 0.427 0.000

Drs-l 3 L:3336529 upstream modifier effector 0.251 0.975 0.028

GNBP1 3 L:18671289 downstream modifier recognition 0.187 0.150 0.729

GNBP2 3 L:18671295 downstream modifier recognition 0.218 0.167 0.666

Fadd 3 R:17861054 UTR 3’modifier signalling 0.200 0.006 0.822

Fadd 3 R:17861073 UTR 3’modifier signalling 0.287 0.425 0.712

kay 3 R:25600668 intron signalling 0.200 0.588 0.743

Tak1 X:20388404 intron signalling 0.227 0.326 0.964
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considered as markers for a larger haplotype that contains

causal variants.

Pathogen-specific higher survival associated with spring

and autumn Tep3 haplotypes may increase their frequency

in the wild compared with flies containing a combination

of spring and autumn alleles. Inversions could theoretically

maintain LD that preserves the high-fitness spring and

autumn haplotypes [67,68], but this is unlikely because the

In(2 L)t inversion that contains Tep3 does not cycle with

season [29,50]. Additionally, Tep3 is not located near a recom-

bination-limiting breakpoint of In(2 L)t nor is it in LD with

other seasonal immune SNPs within the inversion. However,

we found that in two independent populations, alleles of the

intronic SNP at 2 L: 7703202 were non-randomly distributed

with respect to karyotype, while 2 L:7705730 had no signi-

ficant association with either arrangement of In(2 L)t. LD

might be created and maintained by selection against recom-

binant phenotypes either due to lower immunocompetence

or another pleiotropic trait or because of intraspecific genetic

incompatibilities. Deleterious incompatibilities maintain dis-

tinct haplotypes in Arabidopsis thaliana NLR immune

receptors [69] and may also explain the near absence of the

Tep3CG combination of spring and autumn alleles in all popu-

lations examined. Flies containing the Tep3CG haplotype

appear three times across the haplotype tree constructed
from the seasonal Pennsylvania inbred lines, suggesting

that the haplotype may form occasionally through recombi-

nation but does not proliferate in the population. Thus, it

is likely that selection for the immune benefits of spring

and autumn haplotypes and against combination of

spring and autumn alleles maintains these distinct haplo-

types in the wild. While these Tep3 haplotypes explained

some of the seasonal differences in immune tolerance of

natural populations, other seasonally changing genes may

also contribute to the observed differences in bacterial

resistance in natural populations.
(d) Epistasis among AMP genes involved in rapid
seasonal adaptation

Intergenic epistatic interactions between Tep3 and Dro6
suggest that season-specific genotypes have highest

fitness. In our experiment, flies having all spring or all

autumn alleles had higher survival after infection, while

flies that contained a combination of spring and autumn

had higher mortality. This suggests that complex genetic

interactions shape winter and summer fitness, with

distinct haplotypes maintained by non-additive epistatic

interactions [70–72].
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5. Conclusion
We demonstrate that pathogen-specific innate immunity evolves

rapidly in natural populations of D. melanogaster across replicate

years and geographical locations. Comparative studies across

species and among populations have indicated that immune

genes evolve faster than other genes in the genome, but

the rapid phenotypic and genetic change we observed over

approximately 10 generations is a substantially faster rate than

previously considered. We tested a small subset of the

immune SNPs that oscillate in allele frequency over seasonal

time and observed intra- and intergenic interactions consistent

with changes in immune tolerance and resistance across seasons

in natural populations, perhaps in response to seasonally

changing bacterial communities. Epistatic interactions among

seasonally oscillating immune alleles may help facilitate this

rapid phenotypic change over a short seasonal time scale. This
rapid, cyclic response to biotic variables broadens our under-

standing of the complex ecological and genetic interactions in

the evolutionary dynamics of natural populations.

Data accessibility. Raw data have been deposited with Dryad (http://dx.
doi.org/10.5061/dryad.qf5m8) [73].

Author contributions. E.L.B., V.M.H., B.P.L. and P.S.S. designed the pro-
ject. E.L.B. and P.S.S. collected samples, and E.L.B. and V.M.H.
performed infections. F.S. analysed microbial communities. A.O.B.
and D.A.P. inbred and sequenced the seasonal lines. E.L.B., M.K.
and P.S.S. did data analyses. E.L.B., V.M.H., M.K., F.S., A.O.B.,
D.A.P., B.P.L. and P.S.S. wrote the paper.

Competing interests. The authors have no competing interests to declare.

Funding. This work was supported by NSF GRF-DGE-0822 (ELB),
Rosemary Grant Award from Society for the Study of Evolution
(E.L.B.), Peachey Environmental Fund (E.L.B.), NSF DEB 0921307
(P.S.S.) and NIH R01GM100366 (P.S.S. and D.A.P.).

Acknowledgements. We thank Robert Unckless and two anonymous
reviewers for constructive feedback on the manuscript.

http://dx.doi.org/10.5061/dryad.qf5m8
http://dx.doi.org/10.5061/dryad.qf5m8
http://dx.doi.org/10.5061/dryad.qf5m8
http://rspb.royalsocietypublishing.org/


9

 on January 10, 2018http://rspb.royalsocietypublishing.org/Downloaded from 
References
rspb.royalsocietypublishing.org
Proc.R.Soc.B

285:20172599
1. Darwin C. 1859 On the origin of species by means of
natural selection, or, the preservation of favoured
races in the struggle for life. London, UK: J Murray.

2. Grant PR, Grant BR. 2002 Unpredictable evolution in
a 30-year study of Darwin’s finches. Science 296,
707 – 711. (doi:10.1126/science.1070315)

3. Thompson JN. 2013 Relentless evolution. Chicago, IL:
University of Chicago Press.

4. Carroll SP, Hendry AP, Reznick DN, Fox CW. 2007
Evolution on ecological time-scales. Funct. Ecol. 21,
387 – 393. (doi:10.1111/j.1365-2435.2007.01289.x)

5. Messer PW, Ellner SP, Hairston Jr NG. 2016 Can
population genetics adapt to rapid evolution? Trends
Genet. 32, 408 – 418. (doi:10.1016/j.tig.2016.04.005)

6. Endler JA. 1977 Geographic variation, speciation,
and clines. Princeton, NJ: Princeton University Press.

7. Sheldon BC, Verhulst S. 1996 Ecological
immunology: costly parasite defenses and trade-offs
in evolutionary ecology. Trends Ecol. Evol. 11,
317 – 321. (doi:10.1016/0169-5347(96)10039-2)

8. Lochmiller RL, Deerenberg C. 2000 Trade-offs in
evolutionary immunology: just what is the cost of
immunity? Oikos 88, 87 – 98. (doi:10.1034/j.1600-
0706.2000.880110.x)

9. Schmid-Hempel P. 2003 Variation in immune
defense as a question of evolutionary ecology.
Proc. R. Soc. Lond. B 270, 357 – 366. (doi:10.1098/
rspb.2002.2265)

10. Moret Y, Schmid-Hempel P. 2000 Survival for
immunity: the price of immune system activation
for bumblebee workers. Science 290, 1166 – 1168.
(doi:10.1126/science.290.5494.1166)

11. Ilmonen P, Taarna T, Hasselquist D. 2000
Experimentally activated immune defence in female
pied flycatchers results in reduced breeding success.
Proc. R. Soc. Lond. B 267, 665 – 670. (doi:10.1098/
rspb.2000.1053)
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