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ABSTRACT Individuals are genetically variable for the way in which they process nutrients and in the effects
of dietary content on reproductive success, immunity, and development. Here, we surveyed genetic
variation for nutrient stores (glucose, glycogen, glycerol, protein, triglycerides, and wet weight) in the
Drosophila Genetic Reference Panel (DGRP) after rearing the flies on either a low-glucose or high-glucose
diet. We found significant genetic variation for these nutritional phenotypes and identified candidate genes
that underlie that variation using genome-wide associations. In addition, we found several significant
correlations between the nutritional phenotypes measured in this study and other previously published
phenotypes, such as starvation stress resistance, oxidative stress sensitivity, and endoplasmic reticulum
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stress, which reinforce the notion that these lines can be used to robustly measure related phenotypes

across distinct laboratories.

The quality of dietary nutrition and the assimilation of dietary nu-
trients have significant influence on many traits, including lifespan
(Piper et al. 2005; Piper and Partridge 2007; Skorupa et al. 2008),
development (Layalle et al. 2005), reproduction (Fricke et al. 2008),
and immunity (Ayres and Schneider 2009; Fellous and Lazzaro 2010;
Vass and Nappi 1998). Resources such as the Drosophila Genetic
Reference Panel (DGRP) provide a practical means of using natural
genetic variation to both untangle the genetic basis of complex traits
and understand the intersection of selection and genetics in the main-
tenance of that variation (Mackay et al. 2012). The DGRP is a set of
approximately 200 D. melanogaster genetic lines that have been
genome-sequenced and are available to the community for the mapping
of complex genetic traits. Here, we present the results of a genome-
wide scan for SNPs associated with several nutritional indices mea-
sured after rearing on either a low -glucose (1 glucose: 2 yeast) diet or
a high-glucose (2 glucose: 1 yeast) diet. We found significant genetic
variation for all traits (total soluble protein, glucose, glycogen, free
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glycerol, triglycerides, and wet weight) and were able to map under-
lying genes. We additionally note correlations between our nutritional
indices and several previously published DGRP phenotypes (Mackay
et al. 2012; Jordan et al. 2012; Ayroles et al. 2009; Chow et al. 2013b).

MATERIALS AND METHODS

Drosophila stocks and husbandry

We assayed nutritional indices in the DGRP (Mackay et al. 2012), a
collection of approximately 200 inbred lines of Drosophila melanogaster
derived from wild-caught females (2003, Raleigh, NC). Our study
utilized 172 of these lines, although not every line was available for
every day of the experiment.

Before measuring any phenotypes, each line was reared for at least
three generations on two diets that varied in glucose content. The low-
glucose diet consisted of 5% weight by volume brewer’s yeast (MP
Biomedicals, Santa Ana, CA), 2.5% glucose (Sigma-Aldrich, St. Louis,
MO), and 1% Drosophila agar (Genesee Scientific, San Diego, CA)
supplemented with 800 mg/L methyl paraben (Sigma-Aldrich), and
6 mg/L carbendazim (Sigma-Aldrich). The high-glucose diet was
exactly the same but consisted of 10% glucose.

Nutrient indices in the DGRP

We assayed nutritional indices in pools of 10 adult males from each line
aged 3-6 days after eclosion. We measured free glucose, glycogen stores,
total triglycerides, free glycerol, and soluble protein in groups of 10
male flies, with three biological replicates of rearing on each diet. Each
group of flies was weighed using a MX5 microbalance (Mettler-Toledo,
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Columbus, OH) and then homogenized in 200 w.L buffer (10 mM Tris,
1 mM EDTA, pH 8.0 with 0.1% v/v Triton-X-100) using lysing matrix D
(MP Biomedicals, Santa Ana, CA) on a FastPrep-24 homogenizer
(MP Biomedicals). We immediately froze 50 pL of the homogenate to
be used for the total protein assay and incubated the remaining 150 pL
at 72° for 20 min to denature enzymes naturally present in the
homogenate. Each nutritional index was assayed using modifications
of commercially available kits (see Unckless et al. unpublished data;
Ridley et al. 2012): glucose with the oxidase kit (GAGO-20; Sigma-
Aldrich); glycogen using the glucose kit and amyloglucosidase from
Aspergillus niger (A7420; Sigma-Aldrich) in 10 mM acetate buffer at
pH 4.6; free glycerol and triglycerides using reagent kits F6428 and
T2449, respectively (Sigma-Aldrich); and soluble protein with the
DC Protein Assay (BIO-RAD, Hercules, CA).

Data analysis

Before genome-wide association mapping, we estimated line means
for each nutritional index using abundance of metabolite per mg of
fly. The model used was:

Yijklmn = m + Wolb; + Dietj + Liney (Wolbz) + Block, (Dietj)
+ Diet; x Lineg (Wolb;) + ejjkimn

where Y is the estimated mass (ug) per fly of each nutrient divided
by the mass of the flies measured in mg (except, obviously, in the
case where wet mass is itself the response variable). Wolb; (i = 1,2)
indicates endosymbiotic bacterium Wolbachia pipientis infection
status, Diet; (j = 1,2) indicates rearing diet, Block,(Diet;) (n = 1,3)
differentiates among the three replicate blocks within each diet,
Line(Wolb;) (k = 1,2,...,172) tests the influence of inbred line on
nutritional index nested within Wolbachia infection status (52.2% of
lines were infected), and the Diet; x Line,(Wolb;) interaction term
tests whether inbred lines differ in their responsiveness to the two
diets. All factors were considered fixed. All models were run in SAS
9.3 (Cary, NC) using the “GLM” procedure and least squares means
were extracted. For modeling on each diet individually, the model
used was: Yy = m 4+ Wolb; + Line;(Wolb;) 4 Block; + ej.

We also obtained a more holistic view of fly metabolic status by
performing a principal component analysis on the collective set of
nutritional measures, excluding wet weight, because that is implicitly
contained in mass-scaled measures of individual nutrients. This
allowed us to distill the higher-order interactions of our nutritional
phenotypes into several one-dimensional components. Line estimates
for each nutritional principal component were determined using the
prcomp function in R (R Core Team 2012) with tol = 0.1 and unit
variance scaling turned on. This analysis was completed with flies
reared on the two diets considered separately.

Genome-wide association mapping

The set of SNPs for genome-wide association mapping was described
in Huang et al. (2014) and consists of only SNPs with minor alleles
present in at least four of the lines (MAF >2%; 2,415,518 total SNPs).
For genome-wide associations, we formatted this SNP set for PLINK-
assessed (Purcell et al. 2007) associations between SNP and line
estimates from the above models using the “-assoc” flag to perform
associations and the “-~qt-means” flag for estimates of effect size.
PLINK uses an ordinary least squares model for each SNP. These
analyses were performed for the high-glucose diet, low-glucose diet,
and when data from both diets were pooled. We used a nominal
P value threshold of P < 107 for declaring SNPs to be significantly
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associated with trait variation but relaxed this to P < 10~ * for gene
ontology enrichment analysis (see below).

GO term analysis

We performed Gene Ontology (GO) analysis corrected for gene size
using GOWINDA (Kofler and Schlotterer 2012) to test for the
enrichment of particular functional groups in genes bearing SNPs
associated with variation in phenotypic traits. Significantly associated
SNPs (P < 107 4) for each treatment (low glucose, high glucose, main
effect) were used as the query set with a background SNP set consist-
ing of all remaining SNPs used in the genome-wide mapping. We
used this relaxed P value threshold to increase the number of signif-
icant SNPs in this analysis. GO slim (Adams et al. 2000) terms were
used to reduce redundancy in GO categories. GOWINDA was run
using gene mode, including all SNPs within 1000 bp of a gene, a min-
imum gene number of 5, and with 100,000 simulations. We report all
GO terms with a nominal P < 0.1.

Phenotypic correlations with other traits

We examined correlations among our measured traits, and between
our nutritional phenotypes and independent traits that have been
measured in the DGRP lines by other research groups. Correlation
analyses were performed in R (R Core Team 2012) using our line mean
estimates, and we report both correlation coefficient and P value. For
significantly correlated traits, we queried whether a single gene or a few
genes might drive the correlation by determining whether the same
SNPs were significantly associated with variation in both traits with
a relaxed P value threshold of 107°.

RESULTS

Genetic and environmental variation for nutritional

status across the DGRP

ANOVA for each nutritional index (both pooled across diets and on
each diet individually) is presented in Supporting Information, Table S1.
When the data from each diet are analyzed separately, all nutritional
indexes showed a significant (or nearly significant) line effect except
soluble protein after rearing on the low-glucose diet and triglycerides
after rearing on the high-glucose diet (Table S1b), indicating that most
traits are genetically variable. When the data from both diets were
pooled, all nutritional indices except free triglycerides and glycogen
showed a significant effect of rearing diet, with glucose, glycerol, and
triglycerides occurring at higher levels in flies reared on the high-glucose
diet, whereas glycogen, soluble protein, and total wet mass were lower in
flies reared on the high-glucose diet. All nutritional indices showed
a significant effect of line. Only wet weight showed a significant
interaction between line and diet (Table Sla). In addition, total soluble
protein showed a significant effect of Wolbachia infection status
(P = 0.047). All phenotypic values are presented in Table S2.

Principal components of nutritional indices

We considered that our nutritional indices might give more information
about the metabolic status of the fly when considered in aggregate, so
we used a principle component (PC) analysis to extract the top five PCs
from the full nutritional data set. The top five principal components
summarizing the NIs on each diet each explain 12-31% of the total in
nutritional state, with loadings of each NI given in Table S3. Principal
component loadings show variation in both sign and magnitude of
contribution from each NI, suggesting they capture complex integra-
tions of the nutritional indices to reflect overall metabolic state.
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Reference

Balfanz et al. 2005

NA
Karouzou et al. 2007
Karouzou et al. 2007
Boutros et al. 2004

NA
Tweedie et al. 2009
Tweedie et al. 2009

NA

NA

Insect cuticle protein
Insect cuticle protein
Cellular process

Unknown

Function
Intracellular signal transduction
NA

Octopamine receptor activity
DNA binding

NA
Down (571)
Up (534)
Intron
Intron
Intron
Intron

Type
Intron
NA

FBgn
FBgn0038980
NA
FBgn0052405
FBgn0020640
FBgn0259162
FBgn0031646
FBgn0034420
FBgn0263512
NA

Gene

oa2

NA
Cpré65Av
Lcpb5Ae
RunxB
CG2837

NA

CG10737
Vsx2

MAF
0.140
0.512
0.482
0.222
0.353
0.331
0.188

NA

Effect
—0.023
—-0.013
0.012
—0.020
0.025
—0.025
0.033
NA

P
2.41E-07
6.69E-07
5.82E-07
3.85E-07
8.54E-07
9.66E-07
4.50E-07

NA

SNP
3R.18325276
2R.17648180
3L.6131752
X.20411124
2L.4905518
2R.15064256
X.5445429

NA

Diet
Pooled
HGD
LGD
Pooled
Effect, effect size of minor allele; SNPs labeled NA are not within 1000 bp of an annotated gene. Lines with all NAs indicate no SNPs met significance threshold; MAF, minor allele frequency.

Table 2, continued

NI
Protein (cont.)

Triglycerides

Phenotypic correlations with other traits

We measured correlations between our nutritional phenotypes and
several other traits that have been measured in the DGRP and for
which the data are publically available (starvation stress resistance,
chill coma recovery, startle response, oxidative stress response,
endoplasmic reticulum stress) (Mackay et al. 2012; Jordan et al
2012; Chow et al. 2013b). Table 1 contains the correlation coefficient
and P value for each trait combination. Note that for all nutritional
indices, we present correlations between other phenotypes and line
means estimated when data from both diets were pooled. We did not
perform principal components analysis on this pooled data; however,
diet-specific principal components were used for the analysis.

Several interesting correlations are evident. In particular, starva-
tion stress resistance as measured by Mackay et al. (2012) is corre-
lated with several metabolic principal components and is positively
correlated with wet weight (P = 0.005) and with levels of glucose
(P =0.004) and glycogen (P < 0.001). Chill coma recovery, also
measured by Mackay et al. (2012), is correlated with two meta-
bolic principal components as well as with wet weight (P = 0.005),
levels of glucose (P = 0.004), glycogen (P = 0.048), and protein
(P = 0.038). Startle response (Mackay et al. 2012) is correlated
with two metabolic principal components and with glucose (P <
0.001) and triglyceride (P = 0.003) levels. Sensitivity to oxidative
stress, induced by either paraquat or menadione sodium bisulfate
(MSB) (Jordan et al. 2012), was positively correlated with glycogen
stores (P = 0.029 and P = 0.021, respectively) and wet weight (P =
0.035 and P = 0.025, respectively). Sensitivity to paraquat was also
negatively correlated with soluble protein (P = 0.032). Interest-
ingly, several nutritional indices were significantly correlated
with time to 50% mortality after endoplasmic reticulum stress
(ER Ts0) (Chow et al. 2013b), including glycogen stores (P =
0.005), glycerol level (P = 0.004), total triglycerides (P = 0.020),
as well as PC1 and PC3 on the low-glucose diet and PC1 on the
high-glucose diet.

Phenotypic values for male reproductive fitness, male aggression,
lifespan, and ethanol tolerance were also reported for a smaller set
of 40 DGRP lines (Ayroles et al. 2009). With only 40 lines, we have
less power to find correlations with these data, although we do still
detect some significant correlations. Male reproductive fitness (pro-
portion of offspring sired during competition for matings with males
from a marked stock) is negatively correlated with our measure of
soluble protein (P = 0.015) and positively correlated with low-
glucose diet PC5. Lifespan is positively correlated with low-
glucose diet PC4. Surprisingly, male aggression as determined by
Ayroles et al. was negatively correlated with our measure of wet
weight (P = 0.044), where we might have naively expected larger
flies to be more aggressive. Finally, ethanol tolerance is significantly
positively correlated with high-glucose PC4.

Genome-wide association results

SNPs that are significantly associated with variation in each
nutritional phenotype (P < 107°) are presented in Table 2 and
Table 3. Overall, SNPs significantly associated with variation
in our nutritional phenotypes are disproportionately found as
nonsynonymous substitutions or in introns and UTRs, as opposed
to synonymous substitutions or positions more than 1000 bp from
known genes, relative to the distribution of all variants across the
genome. For the nutritional indices, 33 out of 48 (69%) total sig-
nificantly associated SNPs across phenotypes and diets are found in
introns, UTRs, less than 1000 bp from an annotated gene, or as
nonsynonymous SNPs. For principal components, this fraction is 17
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of 24 (71%). In contrast, less than half of all SNPs meeting criteria for
inclusion in this study are found in introns or UTRs, are less than 1000
bp from an annotated gene, or are nonsynonymous. This enrichment
for putatively functional SNPs is significant (x* = 6.75, df = 1, P = 0.009
for nutritional indices; x> = 4.17, df = 1, P = 0.041 for principal
components). For example, across the three mapping strategies (low
glucose, high glucose and data pooled across diets), there were seven
unique SNPs meeting our threshold for association with glucose levels.
Of these, one was synonymous and one was not associated with any
known gene. The remaining five mapped SNPs were intronic. For
triglyceride levels, all four significantly associated SNPs were intronic.
Each SNP that associates significantly with variation in a measured
phenotype is given in Table 2, including significance level, estimated
effect size, minor allele frequency, type of SNP, and gene functional
categorization. No SNPs were significantly associated with more than
one distinct nutritional phenotype, even when the significance thresh-
old was relaxed to 1075,

Gene ontology analysis for enrichment

To determine whether the SNPs significantly associated with variation
in each phenotype were clustered in genes with particular biological
functions, we performed gene ontology (GO) enrichment analysis.
Across all NIs and all diets, few categories were even nominally
significant for enrichment and none was significant after correcting for
multiple testing (Table 4). This may not be surprising because GO
analysis of mapping results implicitly assumes the “infinitesimal model”
of quantitative genetics, where many genes each contribute small but
meaningful effects on the overall phenotype. We have no evidence that
this is an appropriate model for our nutritional phenotypes, and we
expect that, given the sample size of the DGRP, our experiment lacks
power to identify SNPs of small effects.

DISCUSSION

We found significant genetic variation for wet weight as well as five
nutritional indices (levels of glycogen, free glucose, soluble protein,
triglycerides, and free glycerol) in the DGRP after rearing on two
different diets that varied in glucose content. Several of these nutritional
indices and the principal components describing them jointly are
correlated with phenotypes that have been measured by other re-
searchers. Because the complete genomes have been sequenced for all
of the lines in the DGRP, we could conduct genome-wide association
mapping to identify candidate genes that may influence Drosophila
metabolic status in response to diet.

We were able to identify genetic correlations among the traits we
measured and between our traits and phenotypes measured by
independent groups in other studies. Many of these correlations make
good biological sense. For example, starvation stress resistance is
positively correlated with wet weight and with stores of glucose and
glycogen, consistent with a simple interpretation that genotypes that
store more nutrients are more resistant to starvation. The correlations
among other phenotypes were less intuitive but may motivate follow-
up examination. For example, we found correlations between endo-
plasmic reticulum stress and several nutritional indices (glycogen,
glycerol, triglycerides), suggesting that nutrients play a role in modu-
lating the ER stress response. One concern could be that spurious
correlations arise due to variable inbreeding depression among
the lines. However, we do not believe this would be a sufficient
explanation because at least some of the correlations appear to be
negatively correlated with respect to fitness. For example, wet weight
was negatively correlated with male aggression (P = 0.044), where we
would presume that both greater wet weight and more aggressive males
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would be more “fit.” However, guessing at the fitness value of nutri-
tional indices is obviously difficult. For example, we simply do not
know a priori whether flies with more glycogen stores are inherently
more or less fit than flies storing less glycogen, and the answer probably
depends on the environmental conditions.

Our genome-wide association mapping implicated many genes as
explaining natural variation for nutritional phenotypes, and these can
be targeted for more thorough follow-up study. One striking pattern is
the over-representation of genes involved in nervous system
development and behavior. This may be an artifact of the observation
that neurological genes tend to be large and therefore provide a larger
target for association studies (Mackay et al. 2012; Chow et al. 2013a).
Neurological terms were generally not enriched in our GO analysis that
controlled for gene size. A majority of significantly associated SNPs
were intronic, suggesting that gene expression variation may play
a major role in determining variability in nutritional phenotypes.
Generally speaking, the mapping results presented here can provide
a starting point for further research on these important traits.
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