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Abstract

Background: Anopheles funestus is one of the primary vectors of human malaria, which causes a million deaths each year in
sub-Saharan Africa. Few scientific resources are available to facilitate studies of this mosquito species and relatively little is
known about its basic biology and evolution, making development and implementation of novel disease control efforts
more difficult. The An. funestus genome has not been sequenced, so in order to facilitate genome-scale experimental
biology, we have sequenced the adult female transcriptome of An. funestus from a newly founded colony in Burkina Faso,
West Africa, using the Illumina GAIIx next generation sequencing platform.

Methodology/Principal Findings: We assembled short Illumina reads de novo using a novel approach involving iterative de
novo assemblies and ‘‘target-based’’ contig clustering. We then selected a conservative set of 15,527 contigs through
comparisons to four Dipteran transcriptomes as well as multiple functional and conserved protein domain databases.
Comparison to the Anopheles gambiae immune system identified 339 contigs as putative immune genes, thus identifying a
large portion of the immune system that can form the basis for subsequent studies of this important malaria vector. We
identified 5,434 1:1 orthologues between An. funestus and An. gambiae and found that among these 1:1 orthologues, the
protein sequence of those with putative immune function were significantly more diverged than the transcriptome as a
whole. Short read alignments to the contig set revealed almost 367,000 genetic polymorphisms segregating in the An.
funestus colony and demonstrated the utility of the assembled transcriptome for use in RNA-seq based measurements of
gene expression.

Conclusions/Significance: We developed a pipeline that makes de novo transcriptome sequencing possible in virtually any
organism at a very reasonable cost ($6,300 in sequencing costs in our case). We anticipate that our approach could be used
to develop genomic resources in a diversity of systems for which full genome sequence is currently unavailable. Our An.
funestus contig set and analytical results provide a valuable resource for future studies in this non-model, but
epidemiologically critical, vector insect.
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Introduction

Anopheles funestus is a primary vector of human malaria parasites,

which cause almost a million deaths of children under the age of 5

annually in sub-Saharan Africa [1]. The genome of An. funestus has

not been sequenced, although it is expected to be within the next

couple of years [2]. The current absence of a sequenced genome

prevents many valuable experimental approaches from being

applied to An. funestus, including determination of gene expression

patterns after exposure to malaria parasites, comparison of

genome content to other Anopheles and insect species, and reverse

genetic manipulation to determine gene function. Despite the

absence of a fully sequenced and assembled genome, however,

many of these experiments could be pursued after sequencing of

the transcriptome, the complete set of expressed genes.

Short read sequencing technologies such as the Solexa/Illumina

(Illumina), 454 (Roche) and SOLiD (ABI) platforms have made it

increasingly possible to perform de novo transcriptome sequencing

[3–4]. For example, a single experiment on the instrument used in

the present study (Illumina Genome Analyzer IIx, Illumina) can

sequence 225–250 million nucleic acid molecules, generating 45–

50 Gigabases of 100 base pair (bp) paired-end sequence in roughly

9.5 days, where ‘‘paired-end’’ refers to sequences obtained from

the respective opposite ends of a single DNA molecule. As we will

show, this volume of sequencing provides ample read coverage for

de novo transcriptome assembly as well as for gene expression

analyses and polymorphism discovery. The challenge with de novo

transcriptome sequencing using data from short read technology

lies in the difficulty of assembling the reads into contigs reflecting

transcriptional units [3]. Short read sequence assembly is an active
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area of research, and has produced an array of assembly options

(e.g. Velvet [5]; ALLPATHS2 [6]; ABySS [7]; Oases, Schulz and

Zerbino, unpublished). The Roche 454 platform produces longer

reads (,450 bases) than the Illumina platform (,120 bp), helping

to overcome the difficulties of de novo assembly, but Illumina

produces orders of magnitude more sequence at a fraction of the

cost, making it an attractive option for researchers with limited

budgets. Despite this, de novo short read assembly of eukaryotic

transcriptome sequence has been largely confined to 454-based

sequencing efforts e.g. [8–10], with only a very few examples of de

novo transcriptome sequencing using the Illumina platform

occurring in the literature (e.g. Pachycladon [11]; Chinese Hamster

Ovary Cell [12]; Whitefly [13]). Illumina-based transcriptome

sequencing has been hampered in part by the absence of simple

and effective assembly workflows capable of handling Illumina

RNA-seq, or mRNA derived, datasets.

Understanding the basic biology of mosquito disease vectors

such as An. funestus is essential for disease control efforts and

development of new control technologies to be effective [14].

Valuable insights have been gained through studies of An. gambiae

[15–16] and the sequencing of its genome [17], but An. gambiae is

just one of several potent vectors of human malaria in Africa, and

many open questions remain, including those regarding the

genetic similarities and differences between the three most

important and congeneric vectors: An. gambiae, An. arabiensis and

An. funestus. An. funestus is estimated to have shared a common

ancestor with the closely related sibling species pair An. gambiae and

An. arabiensis 30–80 million years ago [18], and previous studies

found the degree of genetic differentiation between An. funestus and

An. gambiae to be high (substitutions per synonymous site (Ks) =

0.61260.392 [19]), prohibiting simple use of the An. gambiae

genome for gene discovery in An. funestus (such as through specific

PCR in An. funestus with primers designed to the An. gambiae

genome). Furthermore, An. funestus exhibits many epidemiologi-

cally important ecological differences from An. gambiae, including

its ability to thrive in arid conditions unsuitable to many other

vectors [20–21]. Disease control efforts will have to be tailored

specifically to An. funestus in order to be fully effective. To date,

there have been no efforts to sequence the complete transcriptome

of An. funestus, although approximately 2,800 Expressed Sequence

Tags (ESTs) have been obtained from traditional sequencing

efforts aimed at genetic mapping [19], salivary gland protein

discovery [22] and general transcript discovery [23].

We used the Illumina Genome Analyzer IIx platform (Illumina)

coupled with a novel assembly approach to sequence the

transcriptome of An. funestus. Historically, the generation of

scientific data, genetic and otherwise, from An. funestus has been

limited by the difficulty in rearing An. funestus in colony. We have

recently established a new colony from specimens caught in

Burkina Faso [Materials and Methods], bringing the number of

An. funestus colonies worldwide from two [24] to three. We

sequenced mRNA deriving from this colony using the Illumina

sequencing platform and assembled the adult transcriptome of this

species de novo using a hybrid assembly approach. Through

bioinformatic analyses we identified ,15,500 largely novel, high

confidence transcription units. Short read alignments revealed

almost 367,000 single nucleotide polymorphisms (SNPs) and

insertion/deletion polymorphisms (indels), as well as substantial

variation in expression levels among contigs. We confirmed

homology of a large majority of our An. funestus contigs to several

Dipteran transcriptomes, and identified 5,434 transcripts that

could be paired to an An. gambiae gene as 1:1 orthologues. Using

bioinformatics, we putatively assigned contigs to broad functional

categories and found that protein divergence was not evenly

distributed among functional categories. Contigs that do not

contain ambiguous bases or previously published An. funestus EST

sequence have been deposited into NCBI and can be downloaded

through the NCBI Sequence Read Archive website. The final

catalog of our inferred transcriptional units is publicly available at

www.jacobecrawford.com and at www.lazzaro.entomology.cor-

nell.edu. We expect that this An. funestus transcriptome will provide

a valuable genomic resource for future studies, including

facilitating experimental genetic experiments and providing

empirical support for gene models of the An. funestus genome

when it is eventually sequenced.

Materials and Methods

An. funestus colony
We collected fed and gravid female An. funestus mosquitoes from

the village of Koubri (12u119540N; 1u239430W) 35 kilometers

South East of Ouagadougou, Burkina Faso, in February of 2007.

Approximately 50 females were used to establish the colony, and

the colony is maintained at a large size with overlapping

generations in the insectary of Centre National de Recherche et

de Formation sur le Paludisme in Ouagadougou, Burkina Faso.

The females used to establish the colony were monomorphic with

respect to chromosomal rearrangements and thus of the Kiribina

chromosomal form as defined by [25]. We sampled females from

the colony for mRNA extraction in November of 2008,

corresponding to the 17th–19th generation since the colony was

established.

RNA extraction and sequencing
3–5 day old female mosquitoes (n = 30) were removed from the

colony, knocked down at 220uC, washed in ice-cold 95% ethanol

to overcome the hydrophobic properties of mosquito cuticles and

rinsed in ice-cold water, and then submerged in RNAlater

(Qiagen, USA) and frozen at 280uC. Carcasses frozen in

RNAlater were transported from Burkina Faso to the US where

they were stored at 280uC. Total RNA was extracted using

standard protocols (Trizol; Invitrogen, USA) from all 30 carcasses

after grinding them under liquid nitrogen. mRNA selection,

library preparation and sequencing was performed by the Cornell

University Life Sciences Core Facilities on an Illumina GAIIx

sequencer according to manufacturer specifications. Briefly,

mRNA was selected using oligo(dT) probes and then fragmented

using divalent cations. cDNA was synthesized using random

primers, modified and enriched for attachment to the Illumina

flowcell. We sequenced one 60-cycle paired-end lane and two 87-

cycle paired-end lanes, generating ,102.6 million reads for a total

of 8,150 MB of sequence. All three un-filtered paired-end lanes of

sequence have been deposited as a series with the accession

number GSE21977 at NCBI’s GEO database or at the NCBI

Short Read Archive under submission number SRA020147.

De novo transcriptome assembly
Prior to assembly and mapping (described below), we applied

filters to remove low quality reads and reads containing suspected

poly-Adenine tails from all three paired-end lanes. First, we

implemented a ‘quality filter’ by removing reads where more than

33% of bases were ‘N’ and reads where more than 34% of the

nucleotides had Phred quality scores less than 20, where a Phred

score of 20 corresponds to a 1% expected error rate. Next, we

removed sequences suspected of containing poly-Adenine tails by

discarding any read composed of greater than 33% Adenine.

Sequence assembly was carried out in three steps: 1) iterative de

novo assembly with Velvet v7.58 [5], 2) ‘target-based’ clustering

Transcriptome of An. funestus
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using An. funestus ESTs to find and unite, where possible, sequences

belonging to the same transcription unit but not joined in Velvet,

and 3) ‘target-based’ clustering using An. gambiae predicted peptides

(Figure 1).

Step 1: Iterative Velvet assembly. For step 1, we used the

de novo assembler Velvet to assemble all three lanes of paired-end

Illumina reads. However, we implemented Velvet in a novel way

in order to improve the assembly. First, we conducted

‘exploratory’ assemblies of the paired reads using multiple hash

lengths (k = 21, 25, 31, 35, 41, 49, and 59). We then conducted an

additional assembly (k = 57) of all unused reads (un-paired) from 4

of the exploratory assemblies (k = 21, 35, 49, 59). Next, we

assembled all contigs obtained from all exploratory assemblies and

the unused reads assembly in a series of ‘summary’ assemblies.

First, we assembled all contigs at 3 different kmer values (k = 29,

39, 49) and then assembled the contigs obtained from these

assemblies in a final summary assembly (k = 39). This ‘‘assembly of

assemblies’’ approach may allow inclusion of some misassemblies,

but these should result in low-confidence contigs that will be

removed in subsequent steps in the workflow. Contigs from the

final summary assembly were included in subsequent clustering

steps.

Step 2: EST-based clustering. The highly coverage-

sensitive nature of contig selection and node connection within

the de Bruijn graph utilized by Velvet often results in partially

fragmented assemblies. Therefore, we included the following

clustering step to ensure all homologous sequence was joined

where possible. For step 2, we downloaded all An. funestus ESTs

from Genbank (n = 2,846 as of November 2009; referred to as

‘‘ESTs’’ below) [19][22–23]. From this larger set of ESTs, We

found 1,496 unique ESTs and used this condensed set as targets in

a ‘target-based’ clustering process in order to join homologous

contigs that were not joined in the Velvet assembly. We first used

BLASTN from the stand-alone bundle of BLAST algorithms

v2.2.23+ [26] to identify all contigs that showed significant

similarity (e-value#161026) with each An. funestus EST

downloaded from Genbank. Each matching contig was then

individually aligned to its EST match using ClustalW [27], and

contig-EST matches were discarded if their ClustalW alignment

score was not greater than 50 plus 3 times the length of the shorter

of the two sequences. All remaining contigs were then grouped by

their matching EST and compared to the match with the highest

BLAST score by dividing all BLAST scores by the maximum score

in the group. Contigs with normalized BLAST scores less than 0.7

were discarded from further clustering steps. If more than one

contig remained in an EST-group after the two previous filtering

steps, contigs within each EST-group were aligned in a global

alignment using ClustalW. To identify good matches between the

EST and individual contigs, individual pairwise alignment scores

for each EST-contig alignment within the global alignment were

divided by the maximum EST-contig alignment score in that

group, and all contigs with a normalized pairwise alignment score

less than 0.7 were eliminated from further clustering. The cutoff

value of 0.7 used in the previous filtering steps was chosen after

visual inspection of a subset of alignments suggested that this

criteria readily distinguished credible matches from those more

likely to be spurious. Contigs that survived all of these filtering

steps were then aligned to their EST match, and any sequence that

extended further than the edge of the EST was joined to the EST

and the total sequence was used in the final contig set. After this

clustering process, the resulting contig set contained some contigs

that were comprised partly of contig sequence and partly of EST

Figure 1. De novo transcriptome assembly and analysis workflow. Illumina reads were assembled in a series of ‘exploratory’ Velvet
assemblies, the contig output of which was used in a ‘summary’ assembly. Following iterative assembly with Velvet, contigs were clustered and
joined when possible, first using conspecific ESTs, then using the transcriptome of a closely related species. A final contig set was generated by
selecting contigs based on bioinformatic support criteria. Illumina reads were then mapped to the final contig set and resulting alignments were
used for expression profiling and polymorphism discovery. aSND refers to short nucleotide discrepancies including both single nucleotide
polymorphisms and indels. bRPKM, or reads per kilobase per million mapped reads [40], was calculated for each contig and used to represent
expression level.
doi:10.1371/journal.pone.0014202.g001
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sequence, some contigs that were comprised of two contigs joined

in the middle by EST derived sequence, some contigs that resulted

from joining two Velvet contigs and many sequences that were

unaffected by the clustering process. Clustering and joining of

contigs was accomplished with custom scripts written in the

statistical computing environment R [28].

Step 3: An. gambiae-based clustering. For the final

assembly step, step 3, we used the An. gambiae predicted peptide

set (release 3.5) downloaded from Vectorbase.org in a second and

analogous ‘target-based’ clustering step. The clustering step based

on An. funestus ESTs (step 2 above) was helpful, but was not likely to

be exhaustive due to the limited number of An. funestus ESTs

available in public databases, so we performed the following

additional clustering step using the much more complete, albeit

evolutionarily diverged, An. gambiae transcriptome. All contigs that

were not joined in the EST-based clustering in step 2 were

evaluated in analogous fashion against An. gambiae peptides. These

contigs were compared to the entire An. gambiae predicted peptide

set using BLASTX and submitted to the same filtering step as in

the EST-clustering step above, where contigs with a normalized

BLAST score less than 0.7 were disregarded. Surviving contigs

were then grouped based on their peptide match. If more than two

contigs matched a peptide, they were globally aligned using

ClustalW. Pairwise ClustalW alignment scores within the global

alignment of greater than 80 were considered positive matches and

these contigs were joined. If only two contigs matched a peptide,

they were aligned and if they overlapped with an alignment score

greater than 90, they were joined into a single contig. If the contigs

did not overlap in alignment, they were joined together by a string

of ‘N’s using the peptide BLAST high scoring pair coordinates of

each contig as a guide for the length of the N string. Like the EST-

based clustering step, this clustering process was performed using

custom R scripts.

At the end of step 3 of the assembly pipeline, the total contig set

was comprised of many contigs that were not affected by the

clustering process, some contigs that were the product of one or

two contigs having been concatenated with pre-existing EST

sequence, some contigs that were joined during the An. gambiae

peptide clustering step, and some contigs that had been scaffolded

around a run of ‘N’s.

Bioinformatics and contig validation
To distinguish between valid transcript sequence and spuriously

assembled sequence we compared the post-clustering set of contigs

to multiple Dipteran insect transcriptomes, searched for open

reading frames and compared translated protein sequences to

functional protein domain databases as a means to identify contigs

with bioinformatic associations with other species. First, we

searched our assembled and clustered An. funestus contigs for

homology to the translated predicted transcriptomes of other

Dipteran insects with sequenced genomes. In addition to the An.

gambiae peptide set used for clustering above, we downloaded the

predicted peptide set from Aedes aegypti (release 1.2) and Culex

quinquefasciatus (release 1.2) as well as the full genome sequence of

An. gambiae (release 3) from Vectorbase.org. We also downloaded

the predicted peptide set of Drosophila melanogaster (release 5.26)

from Flybase.org. For reference, the genus Anopheles (Subfamily

Anophelinae) is predicted to have shared a common ancestor with

Aedes and Culex (Subfamily Culicinae), between 145–200 million

years ago [18] and a common ancestor with Drosophila 260 million

years ago [29]. We compared our final contig set to each of these

four translated transcriptomes using BLASTX, as well as to the An.

gambiae genome using TBLASTX, and high scoring matches with

a minimum e-value of 161026 were kept for further analysis. As

part of functional annotation (described below), we also compared

our contig set to the nr database at NCBI as the first step of Gene

Ontology [30] (hereafter referred to as GO) annotation imple-

mented by Blast2GO [31] using an expect value cutoff of 161026.

In addition, we evaluated the post-clustering contig set based

the size of the inferred open reading frame (ORF) relative to contig

size. We extracted open reading frames from all contigs using the

‘-getorf’ function in the EMBOSS package [32]. To accommodate

the uncertainty of whether our contig captured the full ORF, we

extracted both translated regions that were flanked by a

Methionine and a STOP codon (‘-find 1’; hereafter type A) as

well as translated regions that were simply free of STOP codons

(‘-find 0’; hereafter type B). For each contig, we compared the

largest ORF from each of these types and kept the ORF that

contained a start codon unless the type B ORF extended upstream

of the type A ORF to the beginning of the contig representing

cases in which the true start codon is likely truncated from the

contig. If no type A ORF was found, the type B ORF was chosen.

Then, in order to cleanse the contig set of contigs comprised of

spuriously assembled sequence, we discarded any contig if its ORF

was shorter than 50 amino acids.

To identify putative conserved protein domains and assign

putative functional information to the post-clustering contig set, we

compared translated protein sequences extracted from our contigs

to multiple functional domain databases using RPS-BLAST and

Blast2GO [31]. First, the total peptide set was compared to the

SMART [33], KOG [34], Pfam [35] and CDD [36] databases

using RPS-BLAST with no expect value threshold cutoff, but only

matches with an expect value less than 161026 were considered in

further analyses. We also mapped our contigs to the GO database

using Blast2GO. Annotation through Blast2GO is accomplished

by first searching for matches to the nr database at NCBI, then

mapping to the BLAST results to the GO database and finally

selecting a GO annotation using their Annotation Rule that is

based on the degree of similarity to the GO, GO Evidence Code

weights (default values used here) and relative weights given to

child versus parent terms [31]. In order to simplify the functional

annotations to a set of broad terms, we also mapped the GO

annotations to the Generic GO-Slim terms using Blast2GO. All

results from BLAST comparisons to functional and conserved

protein domain databases as well as the GO annotations are

presented in Table S1.

We chose a final contig set by comparing results of all of the

BLAST and functional domain database comparisons and keeping

only sequences that showed a significant association to at least one

proteome or database. This resulted in a conservative set of

contigs, although it prevents the discovery of novel genes in the An.

funestus transcriptome. This is an unfortunate consequence of the

inherent difficulty in distinguishing novelties from spuriously

assembled sequence. Our contig set as reported is composed

entirely of high confidence transcription units. All contigs that did

not contain any ‘N’s inserted during contig clustering (n = 14,980)

are available in the Transcriptome Assembly Archive at NCBI

under the accession numbers EZ966136 - EZ980985. The full

final contig set is available at www.jacobecrawford.com and www.

lazzaro.entomology.cornell.edu.

After compiling a conservative set of contigs using the

bioinformatic and ORF filtering criteria, we performed a

reciprocal best-hit analysis to identify 1:1 orthologues between

our An. funestus contigs and An. gambiae predicted proteins. First, we

searched the An. gambiae peptide set with BLASTX using An.

funestus contigs as queries with an e-value threshold of 161026. We

then performed the reciprocal search with TBLASTN using An.

gambiae peptides as the queries and the same e-value threshold. An.

Transcriptome of An. funestus
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gambiae peptides shorter than 50 amino acids (n = 26) were omitted

from this search because the BLAST algorithm is unable to parse

such short sequences. One-directional ‘best-hits’ were declared for

each query if only a single BLAST result was obtained or the ratio

of the BLAST score of the ‘second-best-hit’ to the BLAST score of

the first ‘best-hit’ was less than 0.7. One-directional ‘best-hits’ were

identified in both directions and 5,434 reciprocal ‘best-hits’ were

obtained by comparing these datasets.

Read mapping, SND calling and expression profiling
We used the short read alignment algorithm BWA [37] to align

all three paired-end lanes of Illumina sequence reads to the final

contig set established above. Prior to the assembly steps, all

sequence reads were screened for low quality and low complexity

as described above. To accommodate the global mapping

procedure used in BWA and reduce the number of reads not

mapped because of sequencing errors in the terminal end of the

read, positions 76–87 of all remaining reads in the two lanes of

87 bp paired-end reads were trimmed using the FastX toolkit

[http://hannonlab.cshl.edu/fastx_toolkit/], leaving 75 bp reads

for mapping. The trimmed 75 bp and 60 bp paired-end reads

were then aligned to the reference final contig set in BWA, with

the maximum number of difference between each read and

reference sequence set to 5 (‘aln -n 5’). Alignment files from the

three paired-end lanes were merged, sorted and parsed by contig

identification using pileup in the SAMtools package [38]. The

consensus base, putative single nucleotide polymorphisms and

short indels were called using the pileup ‘-c’ option. We called

single nucleotide polymorphisms and indels (hereafter collectively

referred to as short nucleotide discrepancies or SNDs) at sites

where 1) the mapping quality was greater than or equal to 20, 2)

the alternative base occurred at least twice or the equivalent of

0.025 times the coverage at the site when coverage was greater

than 80, 3) only one alternative base occurred at or above this

frequency and 4) at least 6 reads covered the site. Thus, in order to

be considered a putative SNP, the alternative nucleotide would

have to be observed with high confidence at least twice even at a

positions covered by 6 reads. In this way, we aimed to decrease

false positive SND calls from sequencing errors, which are

generally expected to be unique in the read set, but which should

accumulate in abundance linearly with sequence depth.

We were interested in determining colony-level genetic

variation, recognizing that because the polymorphisms reported

here were obtained from a colony of mosquitoes and not a random

population sample, true population genetic parameters describing

the natural population can not be appropriately estimated from

this data. Estimates of genetic variation from high-throughput

sequencing data are complicated by the fact that read depth varies

among and within contigs and that highly expressed genes are

more likely to be completely sequenced and thus represented by

more bases. While raw SND counts are presented for the purpose

of SND discovery, we applied several corrections and assigned

each contig an adjusted nucleotide diversity (hereafter simply

referred to as nucleotide diversity) value. First, we treated any

bases that were not covered by at least 6 reads as missing data, so

we calculated an initial estimate of nucleotide diversity by dividing

all SND counts by the number of bases across the contig that were

covered by at least 6 reads to obtain an estimate of SNDs per base.

Next, to control for ascertainment bias related to variable read

depth, or in this case expression level and mapping success, we

adjusted length-corrected SND counts using the read-depth

correction (eq. 7) proposed by Jiang et al. [39] that accounts for

the possibility of missing data at low coverage sites and the

probability of observing a mutant allele in a given sample. This

correction is intended for regions of a genome with identical read

depth [39], but since this requirement is not applicable to our case,

we used the median read coverage per contig.

We were also interested in testing the utility of the assembled

transcriptome for measuring gene expression. To estimate

mapping success, we quantified the total number of reads mapped

and further distinguished between uniquely mapped reads and

repetitively mapped reads. We also quantified gene expression in

our dataset extracting the number of reads mapped to each contig

during the BWA alignment. However, Gene expression levels can

be estimated from RNA-seq data with great accuracy e.g. [40],

but, since read mapping is sensitive to the size of the target

reference sequence, corrections must be applied to adjust for

contig length. Therefore, we adjusted the raw read count by the

total number of reads mapped and the length of the contig,

calculating Reads Per Kilobase per Million mapped reads

(RPKM; [40]).

Protein divergence
To identify functional categories of proteins that show high

levels of divergence or conservation, we determined protein

divergence between 1:1 An. funestus:An. gambiae orthologues. First,

we aligned orthologous protein sequences using ClustalW. We

then calculated protein distance using the ‘identity’ mode of the

dist.alignment function in the R package seqinr [41]. This function

calculates protein distance as the square root of the proportion of

the sequence that is different between the two sequences.

However, automated sequence alignment is unreliable at high

divergence levels, so we excluded orthologous pairs with less than

30% identity (leaving 4,975 contigs) to avoid false mismatches

introduced by low confidence alignments. Lastly, we assigned each

orthologous pair to one of three categories based on its level of

divergence (or proportion amino acids that differ): High ($0.138),

Intermediate (,0.138 and .0.058) and Low (#0.058) divergence,

with bin cutoffs empirically determined so that one-third of

transcripts fall into each category.

Comparison among functional categories
We used X2 analyses to ask whether any functional categories of

contigs as assigned above were significantly enriched or depleted of

any of the nucleotide diversity categories. As described above, we

first assigned contigs to a protein divergence bin (i.e. Low,

Intermediate or High), and then to functional categories based on

GO-Slim terms. We then, using a X2 test, asked whether each

GO-Slim category was enriched (or depleted) for any of the bins

compared to the expectation of equal proportions expected under

the binning method. We used a Bonferroni-adjusted a level of

5.2661024 to assign significance in tests. As the power of X2

analyses increases with increasing number of observations, we

limited our intra-functional category comparisons to categories

populated by at least 15 contigs.

Distribution of Data and Scripts for Analysis
An Excel spreadsheet, modeled after AnoXcel, containing

peptide sequences, BLAST results, functional annotation results

and other pertinent information for each contig in the final contig

set is available online as Table S1 as well as on the websites www.

jacobecrawford.com and www.lazzaro.entomology.cornell.edu.

All data and results management, manipulations and analyses

were carried out using custom scripts written by J. Crawford in the

statistical computing environment R unless specified otherwise.

Additionally, a Velvet wrapper script written in python by J.

Crawford called AssemblyAssembler.py to automate the iterative

Transcriptome of An. funestus
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Velvet assembly used here is available at the websites given above

and is also packaged with Velvet, starting with version 0.7.63.

Results and Discussion

Sequencing and Assembly
Due to the low cost and ability to obtain both novel sequence

for assembly as well as gene expression data, there is great interest

in utilizing Illumina RNA-seq data for de novo transcriptome

assembly and analysis [3]. We sequenced three paired-end lanes of

mRNA extracted from 30 whole, sugar-fed female An. funestus

using the Illumina Genome Analyzer. Approximately 102 million

reads (or 51 million paired-end reads) passed Illumina quality

filtering totaling roughly 8.1 GB of sequence. We removed 2% of

these reads flagged as either low-quality or low-complexity. A first

pass Velvet assembly with default parameters and a hash length of

31 yielded over 440,000 contigs and an N50 of 209 bp (i.e. 50% of

the total assembled sequence was contained in contigs of this

length or longer). We searched a large range of hash values (k = 21

to k = 59) and obtained a slight improvement by setting the hash

value to 57, producing approximately 357,000 contigs with an

N50 of 228 bp. Further exploration of various parameter settings

and data combinations suggested that an iterative assembly in

which contigs output from generic Velvet assemblies using various

hash lengths are assembled in a final series of Velvet runs

produced the best assembly (Figures 1 and 2). This final contig set

of 46,987 contigs with an N50 of 1,140 bp comprised 27.8 MB of

sequence and was submitted to further downstream filtering and

analysis as detailed in Materials and Methods and briefly described

below.

While the present manuscript was in review, several indepen-

dent efforts to optimize transcriptome assembly using RNA-seq

data were made publicly available. We were encouraged by the

results of one independent study that obtained high quality

transcriptome assemblies of Illumina reads using an iterative,

varied kmer approach similar, in principle, to ours [42]. Two

other efforts that employ an alternative approach have also been

made available (Oases [Schulz and Zerbino, unpublished] and

Cufflinks [43]). To determine how the performance our method

compares to an alternative method, we assembled the An. funestus

transcriptome using Oases with standard parameter settings and

obtained a high quality assembly. This approach generated

approximately twice as many contigs as our pre-clustering contig

set, but the contig sets were very similar with respect to the

proportion of sequences showing homology to An. gambiae and the

N50 value. However, one key difference is that Oases relies heavily

node scaffolding using paired-end information (74.8% of contigs

contain ‘N’s in Oases contig set generated here), which is not ideal

because these ambiguous bases produce ‘edge-effects’ in short-read

mapping analyses.

In principle, the iterative assembly routine employed here is

intended overcome the heterogenous coverage distribution

inherent to non-normalized RNA-seq data by taking advantage

of the fact that some contigs will be assembled best in certain

assembly conditions while others are best assemble in different

conditions. We and a colleague found anecdotal evidence using

independent datasets that high coverage contigs assemble best in

high kmer value assemblies, while low coverage contigs assemble

best in low kmer value assemblies. Further exploration is needed to

determine whether this can be exploited more directly. Impor-

tantly, we subsampled our data and found that this assembly

routine produced a very respectable assembly (maximum contig

length = 12,688 bp and N50 = 784 bp) with only single paired-end

lane of Illumina sequence reads, suggesting that significant

progress can be made with very little sequencing cost.

Following the iterative assembly step, we used ‘target-based’

clustering to improve the de novo assembly. By clustering contigs

around previously described An. funestus ESTs and then predicted

An. gambiae peptides, we searched the contig set for potential

overlaps and joined contigs where possible and appropriate. This

‘target-based’ contig clustering process resulted in only a modest

condensation of the contig set from 46,987 contigs to 45,644

contigs, a 2.9% reduction (Figure 2). In their Illumina-based

assembly of the transcriptome of Chinese hamster ovary cells,

Birzele et al. [12] utilized a similar assembly workflow that was a

hybrid of de novo assembly and read mapping to the phylogenet-

ically closest sequenced model system genome to improve

assembly and annotation and achieved similarly modest assembly

improvements [12]. Birzele et al. [12] used transcripts from the

closely related mouse genome to cluster short reads for assembly

leading to a reduction in their contig set of approximately 6% to

92,272 contigs with a mean length of 352 bp. Our own experience

and the report of Birzele et al [12] suggests that, in general,

clustering may not be an extremely effective means of improving de

novo transcriptome assemblies. In contrast, our pre-clustering

iterative assembly process generated 46,987 contigs with a mean

length of 591 bp, underscoring the potential gains to be made

through alternative de novo assembly approaches even in the

absence of any clustering.

To purge our contig set of spuriously assembled sequence, we

utilized bioinformatic support to validate our contigs. We

eliminated any contig that did not show a significant BLAST

match to at least one of four insect transcriptomes or functional

databases and did not harbor a convincing ORF (Materials and

Methods), leaving 15,527 contigs with an N50 of 1,753 bp

(Figure 2). For comparison, the predicted transcript sets of the

most thoroughly annotated Dipteran genomes, An. gambiae and D.

Figure 2. Size distribution of contigs at three points of the
assembly. Note that the y-axis is broken between 10,000 and 40,000.
White bars indicate the size distribution of contigs generated by the
iterative Velvet assembly. Grey bars indicated the size distribution of
contigs after ‘target-based’ clustering to both An. funestus ESTs and An.
gambiae peptides. Black bars indicate the size distribution of the final
contig set after quality filtering and bioinformatic analysis. The final
contig set contains 15,527 contigs with an N50 of 1,753 bp.
doi:10.1371/journal.pone.0014202.g002
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melanogaster, are comprised of 14,753 and 21,921 transcripts,

respectively, with N50s of 2,258 and 2,475 bp, respectively. This

suggests that, not surprisingly, our contigs are frequently

incomplete and represent only a subset of the potentially expressed

transcriptome. We restricted our final contig set to a limited

number of conservative contigs, reducing the total number of

contigs relative to other de novo transcriptome studies e.g. [9][12].

Even so, our high confidence contig set of 15,527 transcripts

represents a marked expansion of the An. funestus genetic sequence

space over the previously available ,2,800 ESTs (521 of which we

were able to extend through our assembly and clustering process).

Homology with Dipteran sequences
In order to determine homology with available Dipteran

sequences, we compared our contig set to predicted peptide sets

extracted from four sequenced Dipteran genomes (An. gambiae, Ae.

aegypti, C. quinquefasciatus and D. melanogaster) using the standalone

BLASTX algorithm (e-value#161026) as well as to the An. gambiae

genome with the TBLASTX (e-value#161026). We compared

15,527 An. funestus sequences to the closely related An. gambiae

peptide set, finding 13,137 (84.6%) with significant similarity to an

An. gambiae sequence, although this percentage may be slightly

upwardly biased due to the usage of An. gambiae peptides during the

clustering process in assembly step 3 (Materials and Methods). And

while all contigs showed homology with at least one Dipteran

transcriptome consistent with the selection process described

above, a core set of 9,929 (63.9%) contigs showed significant

matches in all four Dipteran transcriptomes (Figure 3). This high

degree of sequence homology is consistent with previous

observations of transcriptome conservation among these species

[23]. Consistent with the expectation of increased divergence with

increased phylogenetic distance, however, the number of contigs

showing significant sequence similarity in pairwise comparisons

between the An. funestus contig set and Dipteran transcriptomes

decreased with increasing phylogenetic distance (Figure 3). It

should be noted that the annotation process that produced the

predicted peptide sets queried here were not independent since

more recent annotations often train their gene model annotation

pipeline on gene models from previously annotated genomes e.g.

[17]. Highlighting the potentially limiting effect of this depen-

dence, we found 2,360 contigs that showed no matches to the An.

gambiae predicted peptide set but significant homology to the full

An. gambiae genome sequence as well as other Dipteran sequences

and sequences in functional domain databases. Although this

discrepancy could be explained in part by differences between the

BLAST algorithms employed in the two comparisons (TBLASTX

for the genome versus BLASTX for the peptide set), it implies the

presence of unannotated genes or transcribed units in the An.

Figure 3. Homology with Dipteran transcriptomes decreases with increasing phylogentic difference. The number of An. funestus
contigs with significant BLAST hits in pairwise comparisons to An. gambiae, Ae. aegypti, C. quinquefasciatus and D. melanogaster is plotted. Note that
the y-axis only spans 9,000 to 15,000. The solid line indicates the total number of contigs with a significant BLAST hit in each comparison. The dashed
line indicates the number of contigs with a significant BLAST hit in all comparisons as phylogenetic distance increases. The phylogenetic tree at the
bottom of the panel depicts the evolutionary relationships between the Dipteran insects used in pairwise BLAST comparisons, with estimated
divergence times (in millions of years) at each node (adapted from [53]).
doi:10.1371/journal.pone.0014202.g003
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gambiae genome. A recent transcriptome profiling study also found

many clusters of reads that mapped to unannotated regions of the

Ae. aegypti genome [44] suggesting empirical validation of

transcribed units using next-generation sequencing should be used

to complement in silico gene prediction pipelines.

To best make direct comparisons between species, we searched

for 1:1 orthologous pairs between our An. funestus contigs and An.

gambiae peptides, and putatively assigned 5,434 pairs using the

standard reciprocal best-hit criteria. In a comparison between

protein sequences of An. gambiae, Ae. aegypti and D. melanogaster,

Waterhouse et al. [45] identified 4,951 1:1:1 orthologues and an

additional 886 1:1 Anopheles:Aedes orthologues, suggesting that our

contig set harbors about 93.1% of the conserved, single-copy

Dipteran orthologues. The median sequence similarity between

1:1 orthologues identified here is 86.9% (ssim = 0.127), but 57.7%

of our An. funestus contigs were shorter than their An. gambiae

orthologue (mean proportion of An. gambiae transcript cov-

ered = 81.3%, scov = 0.237), again suggesting that most of our

transcripts are not full-length.

Immune-system genes
When challenged by pathogens such as malaria parasites,

mosquitoes mount a strong and effective innate immune response;

so immune genes are of particular interest as potential points of

exploitation for disruption of disease transmission [16]. To identify

putative immune genes within our contig set, we downloaded a list

of 414 An. gambiae genes annotated as immune genes in the

ImmunoDB database [45]. We found significant sequence

homology between 345 An. funestus contigs and 217 annotated

An. gambiae immune genes. We also identified contigs with

significant homology to 4 An. gambiae genes that have been

functionally shown to be important in anti-malarial defense but

that are not annotated in ImmunoDB: all three of the APL1 genes

(although we are unable to assign strict orthology) [46] and LRIM1

[47].

Genes in the innate immune system can be split into four broad

functional categories: recognition, signaling, regulation and

effectors [45][48]. We also included an additional category,

‘other’, to capture genes involved in other processes such as RNAi

or autophagy that have been implicated in immunity. Based on

significant BLAST matches to An. gambiae genes coding for

recognition proteins including those annotated in ImmunoDB (e.g.

Thioester-containing Proteins, Gram Negative Binding Proteins;

n = 139) as well as the APL1 paralogues and LRIM1, our An.

funestus transcriptome contains 102 contigs that may function in

pathogen recognition. We also recovered 33 contigs (33 in An.

gambiae) putatively involved in immune signaling (e.g. Cactus, Imd),

108 putative immune regulatory contigs such as CLIP-domain

serine proteases or Serine protease inhibitors (compared to 132 in

An. gambiae), 33 putative effector genes (compared to 54 in An.

gambiae; e.g. Cecropins, Lysozymes) and 69 contigs in the ‘other’

category putatively involved in RNAi (e.g. Argonaute and Dicer) and

autophagy etc. (compared to 45 in An. gambiae). All matches

between An. funestus contigs and An. gambiae immune genes are

listed with their relevant immune annotations in Table S2.

Immune-system genes have been shown to be evolving at a

faster rate than other genes in Drosophila and mosquitoes [45][48].

We compared protein sequence divergence among 126 1:1

orthologous pairs between An. funestus and An. gambiae with

putative immune function to determine whether this observation

holds true for our contig set. We found that orthologous pairs with

putative immune function are significantly more diverged than the

total set of all 1:1 An. gambiae:An. funestus orthologous pairs (mean

sequence differences for immune gene orthologues = 16.0%,

n = 126, mean sequence differences among all ortholo-

gues = 10.2%, n = 4,975; p = 6.9561029, Mann-Whitney U-test).

If we subdivide the analysis based on immune-system function, we

find that regulatory proteins are most diverged (mean percent

sequence differences = 18.77%), signaling proteins are second-

most diverged (mean percent sequence differences = 17.90%),

recognition proteins are third-most diverged (mean percent

sequence differences = 16.59%) and effector proteins and proteins

in the ‘other’ category are least diverged (mean percent sequence

differences = 11.51% for effector, 12.13% for ‘other’), although

only the regulatory and other categories are significantly different

from each other (Figure 4; reg vs. other p-value = 0.0032, all other

p-values range from 0.0566 to 0.8724, pairwise Mann-Whitney U-

tests). These results suggest that the immune system genes of An.

funestus are evolving in a fashion consistent with immune genes in

other insects [45][48]. Further studies dissecting the anti-

pathogenic role each contig plays will greatly enhance our

understanding of the mosquito immune system.

Nucleotide diversity
Single nucleotide polymorphisms and short indels (collectively

referred to as single/short nucleotide discrepancies, or SNDs) are

very common in natural populations and provide valuable markers

for genetic mapping as well as population genetic studies. We

identified a set of 366,741 SNDs, suggesting approximately 1.95

SNDs exist in every 100 bp. The mean nucleotide diversity per

contig was 0.019 per base before correction for variation in read

depth and 0.024, (range of 0 to 0.163 per contig) after correction.

This level of variation, particularly high coming from a colony,

suggests that the colony may not have suffered the severe loss of

genetic variation that could be expected after extended inbreeding.

One explanation for this estimate is that the An. funestus colony was

only recently established and thus too few generations of

inbreeding have passed for the effect to be pronounced.

Alternatively, our estimate of 0.024 per base may also be upwardly

biased, however, by the presence of false-positives in our dataset,

resulting from nucleotide mis-incorporation during polymerase

chain reaction steps in template library preparation prior to

sequencing. A previous Sanger-based re-sequencing study identi-

fied 494 SNPs from 20.5 kilobases of sequence (71.4% coding,

with 303 SNPs mapping to the coding region), derived from a

sample of 21 field and colonized specimens of An. funestus [49].

From this survey, they estimated a mean nucleotide diversity level

of 0.007 [49], considerably lower than our estimate likely due to

their smaller sample size. Estimates of nucleotide diversity in An.

gambiae, a congeneric species with comparable generation time,

geographical distribution and seasonality, are typically similar or

perhaps slightly smaller than our estimate for this colony of An.

funestus (e.g. [50–51]). The colony used in this study does not

harbor the chromosomal rearrangements segregating in natural

populations, but small and/or unknown inversions may be present

and could play a role in preserving genetic variation at some loci.

The genetic polymorphisms we have identified as segregating in

this colony of An. funestus should be dispersed among all

chromosomal arms and suggest that significant natural functional

variation can still be found in the colony. Such variation may

provide a valuable opportunity for future genetic mapping of

phenotypes in the colony.

Functional annotation of the whole transcriptome
To provide a biological foundation on which to begin to

globally characterize the transcriptome, we sought to functionally

annotate our contig set based on sequence homology to

functionally annotated sequences in other species and identifica-
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tion of conserved protein domains. We identified 7,567 contigs

that contained regions of significant homology to sequence in at

least one database of protein domains (CDD, SMART, and Pfam).

Comparisons to the KOG and GO databases provided putative

functional information for 10,391 contigs. We were able to assign

3,506 unique GO annotations to 9,026 contigs (36,024 total

matches), meaning that 58.1% of our total contigs have affinity to

at least one GO term. These GO annotations are quite detailed

and provide valuable information for specific contigs, but we were

also interested in assigning contigs to broad functional categories

that could be used to ask transcriptome-level biological questions.

Therefore, we also found 28,781 associations between 119 generic

GO-Slim annotations and 9,026 contigs. All annotation informa-

tion is presented in Table S1, but only the GO-Slim annotations

were used in the analyses described below, specifically focusing on

33 functional categories at the Cellular Component level, 39

categories at the Molecular Function level and 49 categories at the

Biological Process level.

Transcriptome divergence
An. funestus and An. gambiae, estimated to have shared a common

ancestor between 30 and 80 MYA [18], exhibit many ecological,

behavioral and physiological differences. We examined levels of

protein sequence divergence between 1:1 orthologues to determine

whether specific functional categories evolve at a rate that is

different from the transcriptome as a whole. Of the functional

categories tested, 10 Cellular Component categories, 20 Biological

Process categories and 12 Molecular Function categories showed

significant deviations from expected equal proportions of high,

intermediate and low divergence categories at the Bonferroni-

adjusted a level. Results for all categories are presented in Table

S3, and significant results are presented in Figure 5. In general,

significantly deviating categories tended to be enriched with lowly

diverged orthologous pairs, indicating a high level of evolutionary

conservation within these categories. While no categories were

enriched with highly diverged pairs, we found a significant

enrichment of intermediately diverged orthologous pairs localizing

to the mitochondrion (Figure 5), as might be expected considering

the known faster rate of evolution among genes associated with the

mitochondrion. We also found significant enrichment of interme-

diately diverged pairs involved in lipid metabolic processes as well

as in contigs with molecular functions involving catalytic activity

and binding (Figure 5). A study of protein evolution among single

copy orthologues across the phylogeny of the D. melanogaster species

group identified 12 functional categories putatively under positive

selection [52]. The categories identified here as enriched with

intermediately diverged orthologous pairs are not among those 12,

although immune genes identified outside of the GO-Slim analysis

are significantly more diverged than the transcriptome [see above].

We note that our analysis probably has a strong bias toward

detecting conserved sequences, since we limited our analysis to

high confidence alignments and thus probably excluded highly

diverged orthologous pairs. Nonetheless, our analysis offers the

first glimpse into genome level patterns of protein evolution and a

step towards a more comprehensive understanding of protein

evolution in insect vectors.

Figure 4. Variation in transcript divergence among immune gene functional classes. Protein sequence divergence was estimated as the
proportion of aligned amino acids that differ between 1:1 An. funestus:An. gambiae orthologues. As a class, immune gene orthologous pairs (dotted
line indicates mean divergence between immune gene orthologues) are significantly more diverged than the transcriptome as a whole (solid line
indicates mean divergence across the entire transcriptome; p-value = 4.861025, Mann-Whitney U-test). The functional classes within the immune
genes are not significantly different from each (p-values.0.05, pairwise Mann-Whitney U-tests).
doi:10.1371/journal.pone.0014202.g004
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Expression profiling
Transcriptome sequencing in a non-model system makes it

possible to conduct experiments to test hypotheses of differential

expression between experimental treatments, for example. RNA-

seq provides a powerful means of measuring gene-expression

because the depth of sequence coverage of a transcript should be

proportional to its expression level [4]. To demonstrate that a

transcriptome assembled de novo can serve as a reference sequence

for short-read mapping, we used the short read alignment

program BWA to map three paired-end lanes of Illumina

sequence to the final contig set. Of 101 million reads,

approximately 51% of the reads were mapped uniquely to the

transcriptome, while a fraction of a percent of the reads mapped to

more than one location in the transcriptome. Interestingly, the

remaining 49% of the reads were not successfully mapped, despite

our somewhat liberal mapping criteria. It is possible that this rate

of mapping success may reflect problems with this assembly, but a

recent study mapping short sequence tags to the Ae. aegypti genome

Figure 5. PROTEIN DIVERGENCE is unevenly distributed among GO-Slim categories. The heatplot shows proportion of 1:1 orthologous
pairs exhibiting Low, Intermediate and High protein divergence in GO-Slim functional categories. Protein divergence was estimated as the proportion
of aligned amino acids that differed between the two orthologues and each orthologous pair was categorized as Low, Intermediate or High (Materials
and Methods). Only categories whose proportion of each bin differed from expectations based on all orthologous pairs with a p value less than the
Bonferroni-adjusted a of 5.2661024 are presented. The average expected proportions based on all orthologous pairs are presented at the top of the
heatplot.
doi:10.1371/journal.pone.0014202.g005
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reported a comparable rate of mapping success [44] indicating

that this rate is not likely to be an artifact of the de novo assembly

process. Furthermore, we found that the profile of gene expression

across contigs, as measured by reads per kilobase per million

mapped reads (RPKM), adhered to the expected distribution with

95% of contigs having an RPKM value of 133.83 or less and

extreme values that differ by three orders of magnitude (from 2.69

to 19,775.75). Therefore, we failed to find good evidence that

transcriptomes assembled with our approach should not be used in

short read mapping experiments.

Concluding Remarks
Next generation short-read DNA sequencing has made it

possible to explore genome-level questions in non-model organ-

isms, regardless of their phylogenetic proximity to model species

[3]. An. funestus is a primary vector of human malaria, but, as an

experimental system, lags significantly in the availability of

research data and scientific resources. To establish a genomic

resource that will facilitate future genomic level studies in this

species, we used the Illumina GAIIx sequencing platform and a

novel assembly workflow to build the adult female An. funestus

transcriptome. In doing so, we demonstrate the feasibility of

Illumina-based transcriptome sequencing low cost ($6,300 in

sequencing costs) and with the added value of obtaining

quantitative expression and polymorphism data. We assembled a

conservative and tractable set of 15,527 expressed An. funestus

contigs, 5,434 of which could be identified as 1:1 orthologues with

the more distantly related species An. gambiae. We also identified

contigs expressed in An. funestus that showed homology with

unannotated regions of the An. gambiae genome, providing

empirical evidence that these may be bona fide genes with

orthologues that are currently unannotated in the An. gambiae

genome. We identified almost 367,000 genome-wide polymor-

phisms segregating in our recently established An. funestus colony,

and showed that, as expected, most of the An. funestus

transcriptome is evolutionary constrained and is likely evolving

under purifying selection. Our results highlight by example just

some of the many questions that can be addressed using next-

generation sequencing technology to explore the transcriptome of

a non-model organism. We also supply essential tools for future

genetic study of An. funestus and establish a novel de novo

transcriptome assembly flow that should be applicable to any

eukaryote.

Supporting Information

Table S1 Contig Information Database. Excel spreadsheet

containing information about each contig as well as all results

from BLAST and functional domain database comparisons. Each

row contains information for a single contig and each column

contains a result for a specific analysis. NAs are inserted where

there was either no result or the result did not apply to that contig.

From left to right, the columns contain descriptive molecular

information, BLAST results, functional annotation results and

diversity and expression results.

Found at: doi:10.1371/journal.pone.0014202.s001 (30.51 MB

XLS)

Table S2 Putative An. funestus immune genes. Excel spread-

sheet containing significant BLAST matches between An. funestus

contigs and An. gambiae immune genes from ImmunoDB. BLAST

e-values as well as relevant immunity annotations are presented.

Found at: doi:10.1371/journal.pone.0014202.s002 (0.08 MB

XLS)

Table S3 Protein Divergence GO-Slim Analysis. Excel spread-

sheet containing number of contigs in each divergence bin and

results of X2 analysis for each GO-Slim functional category.

Found at: doi:10.1371/journal.pone.0014202.s003 (0.04 MB

XLS)
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