Figure S1. Non-random distribution of BAC clones throughout the Apis genome

BACs representing several-fold clone coverage of the genome were sequenced to low coverage and then mapped to the genome based on microsatellite marker position. A portion of the genome (two of the linkage groups) is shown as displayed in the Genboree browser (www.genboree.org). The top track (A_STS:Linkage) shows the position of markers (at this stage of map development there were 854 mapped markers). The middle track (BAC:CAPS_MAP) shows the position of BACs mapping to this region. Note the 'pile-ups' of BACs over some markers and the absence of BACs over others, indicating a non-uniform distribution. The assembly of WGS reads (v 1.0) was also mapped to the genome and is shown in the bottom track (B_Asm:Scaffolder). It is evident that the WGS assembly covers nearly all the markers in a much more uniform manner than the BACs.

Linkage group 11

Linkage group 14

Figure S2. Coverage distribution per 50bp windows

The sequence coverage was computed for 50 base wide windows over the whole genome for assembly v1.2 (yellow) and v2.0 (blue, after addition of AT-rich reads).

Figure S3. Improvement of the Apis mellifera genome assembly by addition of AT-rich reads.

A. Contig size

B. Coverage

ALL AGAINST ALL OVERLAPPING OF AT BATCHES

For assemblies after each of the four batches of 200,000 AT-rich reads, the N50 of the contigs (A) and the coverage (B, expressed as the overlap number of reads) is shown.

Figure S4. GC content domains

Length distributions of GC-content domains in eukaryotes plotted on a log-log scale. Domains shorter than 10 kb are not shown. In contrast to the fungal genome, S. cerevisiae, the metazoan genomes show power law distributions of GC-content domain lengths, with many short domains and few large domains.

Figure S5. Cumulative distribution of genes (thick lines) and nucleotides (thin lines) vs. GC content.

A) Cumulative distribution of genes (thick lines) and nucleotides (thin lines) plotted against \%GC of GC-content domains in which the genes (nucleotides) are embedded for A. mellifera (green), A. gambiae (blue) and D. melanogaster (red). These plots indicate the low GC content of A. mellifera genes and genome compared to the other insects. The difference between the A. mellifera gene and nucleotide plots indicates the preference of genes for lower GC content regions of the genome, while the distribution of genes in A. gambiae and D. melanogaster more closely resembles genome composition. B) Cumulative distribution of genes plotted against GCcontent percentile of GC-content domains in which the genes are embedded for A. mellifera, A. gambiae and D. melanogaster. This plot also indicates the tendency of A. mellifera genes to lower GC-content regions of the genome.

Figure S6. Distribution of sequence identity between single-copy orthologs.

The histograms show sequence identity distributions of bee, fly and mosquito proteins in comparison to human orthologs.

Figure S7. Comparative introns

The fraction of retained "old" introns was calculated using 4,441 orthologous groups that have at least one representative in each of the six Metazoan analyzed (Homo sapiens (Hs), Gallus gallus (Gg), Tetraodon nigroviridis (Tn), Drosophila melanogaster (Dm), Anopheles gambiae (Ag), Apis mellifera (Am)). We identified 15,560 ancient introns by positional conservation between at least one vertebrate and one insect gene. In case of multiple coorthologues we considered the longest ones.

Figure S8. Honey Bee Cys-loop ligand-gated ion channels

The accession numbers of the Drosophila sequences used in constructing the tree are: Da1 (CAA30172), Da2 (CAA36517), D a3 (CAA75688), Da4 (CAB77445), Da5 (AAM13390), Da6 (AAM13392), Da7 (AAK67257), Db1 (CAA27641), Db2 (CAA39211), Db3 (CAC48166), GluCl (AAG40735), GRD (Q24352), HisCl1 (AAL74413), HisCl2 (AAL74414), LCCH3 (AAB27090), Ntr (NP_651958), pHCl (NP_001034025), RDL (AAA28556). The GB identifiers for the honeybee sequences are: Ama1 (GB17133), Ama2 (GB18518), Ama3 (GB10583), Ama4 (GB19836), Ama5 (GB14283), Ama6 (GB17000), Ama7 (GB19257), Ama8 (GB15196), Ama9 (GB16984), Amb1 (GB17819), Amb2 (GB12006), AmGluCl (GB11639), AmGRD (GB11033), AmHisCl1 (GB19505), AmHisCl2 (GB15968), AmLCCH3 (GB12078), AmpHCI (GB11444), AmRdl (GB14080), AmCG7589 (GB11903), AmGC8916 (GB10798), AmCG12344 (GB18933).

Figure S9. Phylogeny of timeless/timeout proteins in animals

Phylogenetic relationships of timeless/Tim1 and timeout/Tim2 proteins in animals are shown in a corrected distance tree. The animal proteins are rooted with the single orthologs in plants (green), yeasts (orange), and Dictyostelium discoideum (brown). Insect lineages are in red, and show that Apis mellifera has lost the ortholog of timeless in Drosophila and other insects. The timeless lineage was also lost from chordates (blue), but its antiquity is shown by the presence of an orthologue in the sea urchin, Strongylocentrotus purpuratus (purple). Numbers on major branches are percentage presence in 1000 replications of distance and parsimony bootstrap analysis, and 10,000 maximum likelihood quartet puzzling steps. Distances were corrected as described in references below.

Rubin, E. et al. Molecular and phylogenetic analyses reveal mammalian-like clockwork in the honey bee (Apis mellifera) and shed new light on the molecular evolution of the circadian clock. Genome Res (in press) (2006).
Velarde, R. A., Sauer, C. D., KK, O. W., Fahrbach, S. E. \& Robertson, H. M. Pteropsin: A vertebrate-like non-visual opsin expressed in the honey bee brain. Insect Biochem Mol Biol 35, 1367-77 (2005).
Robertson, H. M. \& Gordon, K. H. J. Canonical TTAGG repeat telomeres and telomerase in the honey bee, Apis mellifera. Genome Res (in press), (2006).
Robertson, H. M., Warr, C. G. \& Carlson, J. R. Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster. Proc Natl
Acad Sci U S A 100 Suppl 2, 14537-42 (2003).
Robertson, H. M. \& Wanner, K. W. The chemoreceptor superfamily in the honey bee Apis mellifera: expansion of the odorant, but not gustatory, receptor family. Genome Res. (in press) (2006).

Supplementary Notes and Methods

Construction of draft genome assemblies

BAC library construction. Agarose-embedded genomic DNA prepared from Apis mellifera strain DH4 partially treated with EcoRI and EcoRI Methylase, was size-selected using pulsedfield gel electrophoresis, ligated into pTARBAC2.1 vector between EcoRI sites, and transformed into DH10B (T1 phage-resistant) electro-competent cells (Invitrogen) for the CHORI-224 BAC library. The library was arrayed in 384 -well format.
Sequencing strategy and assembly. The original strategy approved by the NIH-NHGRI aimed to draw on the success of the combined whole genome shotgun (WGS) and BAC approach used in the rat genome project ${ }^{1}$, and assemble this data into a high coverage draft sequence with the Atlas assembler ${ }^{2}$. However, the BAC library showed characteristics that made it unsuitable for this approach. BAC clones showed an insert size distribution that indicated significant deletion or instability, as there was a pronounced skew towards smaller inserts (library CHORI-224, size distribution shown at bacpac.chori.org/bee224.htm). This was not seen in BAC libraries of other organisms made by this method (as shown at bacpac.chori.org) but was conspicuously present in with smaller inserts showed the symmetrical size distribution normally found for large insert libraries (library CHORI-1224; bacpac.chori.org/bee1224.htm). When reads from sequenced BACs were co-assembled with WGS reads, and the result compared to a pure WGS assembly, the scaffold size was smaller indicating the BAC data was detrimental to assembly. Anecdotal observations suggested that deletions within BACs produced novel joints whose read pairs were inconsistent with the WGS read pairs and this led to limits on the length of the scaffolds that could be built. A small minority of novel read pairs could have a significant effect. We also observed that the BAC sequences did not cover the genome uniformly (Supplemental Figure S1) while WGS reads did span the genome appropriately. Thus there appeared to be biases in the BAC data set and consequently it was used sparingly. Some sequences produced from pooled BAC arrays ${ }^{3}$ (CHORI-224 library) were included in the read set, omitting conflicting reads.

The project thus became a pure WGS approach, using small insert clones, fosmid end sequences (which did not show biased distribution), and limited BAC sequences. The Atlas assembler was used as this had successfully assembled the pure WGS data for the Drosophila pseudoobscura project ${ }^{4}$. Analysis of the initial assemblies (v1.0 through v1.2, Supplementary Table S1) showed that some AT-rich sequences had low coverage (Supplementary Figure S2), and notably this occurred in genic regions, preventing complete definition of gene content. To address this, we prepared additional shotgun libraries from AT-rich DNA prepared from density gradients ${ }^{5}$. We 'titrated' the amount of AT-rich sequence to add by producing increments of 200,000 reads from this library and reassembling the genome. Statistics of the new assembly were calculated for each batch of reads to determine if targeted improvements were occurring and whether diminishing return had been reached (Figure S3). After 4 rounds (800,000 reads), the contig N50 had increased two-fold to over 30 kb and the sequence coverage had increased from about $4 x$ to $6 x$. Although both of these statistics were still improving with the final batch of reads, the rate of increase was significantly less than for earlier batches and it was judged not to be cost effective to continue with this mode of upgrading. In addition, the current statistics appeared to have improved the assembly sufficiently to allow accurate assessment of gene content.

Atlas assembly of WGS reads. The Atlas assembler ${ }^{2}$ has been used in a number of genome projects including the rat, D. pseudoobscura, and microbial projects. The process involves initially finding overlaps between reads based on their content of oligonucleotide sequences. Reads that contain highly repeated sequences (e.g. represented at more than 5 x the sequencing coverage, although this is tuned differently for different assemblies) are set aside. Overlaps are determined among the remaining reads and lower copy number repeats are identified by anomalous read layouts they cause (e.g. forking in a linear path). These forks are split and then the groups of overlapping reads (bins) are assembled into contigs (contiguous sequence stretches). Next the contigs are linked into scaffolds (contigs that are ordered and oriented with respect to each other but separated by gaps) based on read pairs. This was the v2 assembly for the honey bee. The repeated sequence reads are separately assembled into contigs (called reptigs) using much more stringent overlapping criteria and these reptigs are added to the assembly based on their read pair links with the scaffolded reads. Thus the content of highly repeated sequences that appear in the assembly depends on how well they assemble into reptigs and can be placed with read pairs, and is likely incomplete. This created the v3 assembly. Finally the scaffolds are aligned to the linkage map (AmelMap3 ${ }^{6}$) based on sequence matching with genetic markers to create the final assembly. The v4 sequence was created using the latest set of markers for this purpose. Although gaps are present, a 'linearized' sequence is produced for each chromosome by including 'Ns' as place-holders. Scaffolds that do not map to any chromosome, i.e. that fall between markers and thus cannot be placed, are combined into an unmapped set called Chromosome or Group Un. Redundant contigs from a second haplotype were omitted from the linearized sequence but were accessioned in GenBank.
Assessment of accuracy of assembly - comparison to directly sequenced BACs. 187 BACs were randomly selected for direct sequencing. Because the BAC library posed some difficulties, a total of 27 of these (over 4 Mb) that were sequenced to at least 6 x coverage were assembled with PHRAP and compared to the v4 honey bee assembly. Statistics for the 27 and 187 BACs are provided in Table S3 D and E. The dot plots are available for viewing at www.hgsc.bcm.tmc.edu/~lzhang5/images/hb-bac/
Each plot is one BAC (x-axis) against one scaffold (y-asix) from the v 4 assembly. The results can be summarized as follows:

1. Coverage: all contigs in the 27 BACs were found in the latest assembly using BLAST, except one contig (size $=1.1 \mathrm{~kb}$) which has only one read and did not hit BIN0 reads (these are reads that overlap few or no other reads; thus there 'bin' is called BIN0 and they are not included in the assembly) or the nr database at NCBI, and is thus likely bogus. All except for four of the 27 BACs showed $>94 \%$ coverage by the assembly, the remaining four being BACs with high repeat contents that showed anomalies in their assemblies. At the BAC level, all BACs could be mapped to chromosomes 1-16, except for small reptig (repeated sequence contig) matches to the Unmapped group (GroupUn). Some contigs had one end hanging in the uncaptured gaps (gaps that are not spanned by a read pair) between scaffolds. Examples: BAC AMAX.Contig47 was found on scaffolds 4.17 and 4.18 , with 14 kb in the middle falling in the gap between them. Other cases are: AMEO.Contig 12 has 5 kb at one end in the gap between 4.16 and 4.17.
AMEO.Contig 15 has 26 kb at one end in the gap between 4.16 and 4.17. These could be problems in the BAC assembly, rather than issues with the v 4 assembly, but are relatively minor and not unexpected for draft sequences.
2. Duplication: the BLAST result showed no major duplication in the v 4 assembly. All contigs had a unique genome location (except some small ones that matched only reptigs on GroupUn).

Based on this, each contig was assigned to a scaffold (or two only if both are partial) on Chromosome 1-16 for analysis by running crossmatch.
3. Insertion/Deletion of BAC contigs: no major insertion or deletion at the contig level were found in the crossmatch results. Almost all matches were contiguous, with allowance for some captured gaps in the assembly, within one scaffold. Only one exception was found, the problem of AMDL described below in detail.
4. Tails of BAC contigs: no large tails were found in the crossmatch results.
5. Conflicts with assembly: two BACs conflicted with the assembly, as detailed below.

Case 1: BAC AMDL matches Group6.27, 6.28 and 6.30 (shown in three plots at the above URL). The tail of Contig104 on 6.27 and the missing part on 6.28 indicate an insertion in the end of 6.27 . It turned out to be a 69 kb reptig at the end of 6.27 . This big reptig might be misplaced. The matches of AMDL on Group6.30 are all small contigs (less than 2 kb). These matches on 6.30 are on two big assembly contigs (no reptigs involved). If we link 6.27 and 6.28 based on the match of Contig104, we cannot explain the matches on 6.30 because these were beyond the size of the BAC. It is likely that these short low coverage BAC contigs belonged to some other BACs, not AMDL. Thus AMDL might be contaminated or mixed with some other BAC, which happens at this frequency.

Case 2: AMCI matches Group13.10 and Group4.17 (shown in two plots in the above URL). AMCI contigs can be separated into two non-overlapping sets, separately matching 13.10 and 4.17. Almost all the longer contigs go to 13.10 . On both scaffolds, the matches are clustered in a BAC sized region. This indicates AMCI is a mixture of two BACs. The marker mapping on 13.10 and 4.17 confirmed each matched region belongs to the corresponding chromosome. No reptigs were involved in these regions. Again, we would expect infrequent BAC contamination in the production pipeline.
In general, the result looks very good in terms of agreement between directly sequenced BACs and the draft v4 assembly. The few very detailed problems affect a small portion $(\sim 0.1 \mathrm{Mb})$ of the $\sim 4.5 \mathrm{Mb}$ sampled by 27 BACs , and are expected for a draft sequence, while the vast majority of the sequence is in agreement. One extrapolates from this that there would be of the order of 100 such issues in the whole genome.
Assessment of completeness of assembly. Markers, cDNAs and EST contigs were searched against the linear scaffold sequences and unassembled BIN0 reads using BLAST. For marker matches, any hit with a minimum identity of 95%, a minimum score of 100 and an e-value of e20 was considered as a good hit. For cDNAs, a minimum identity of 95%, a minimum score of 200 and an e-value of e-10 was required for a good match. For ESTs, a minimum identity of 95%, a minimum score of 200 and an e-value of e-10 was required for a good match. For cDNA and ESTs, 90% or more of the sequence length coverage was required.
Assembly of superscaffolds for chromosomes 13, 14, 15, and 16. Components of the superscaffolds are scaffolds (GenBank/EMBL/DDBJ accessions NW_001262656, NW_001262654, NW_001262552, NW_001262481, NW_001261703, NW_001261682, NW_001261680, NW_001261637, NW_001261604, NW_001261552, NW_001261486, NW_001261446, NW_001261395, NW_001261255, NW_001260980, NW_001260955, NW_001260913, NW_001260790, NW_001260755, NW_001260754, NW_001260720, NW_001260636, NW_001260546, NW_001260518, NW_001260341, NW_001260051, NW_001259944, NW_001259874, NW_001259640, NW_001259366, NW_001259332, NW_001259258, NW_001259142, NW_001258991, NW_001258569, NW_001258460, NW_001258104, NW_001258076, NW_001257940, NW_001257881, NW_001257763,

NW_001256909, NW_001256766, NW_001256757, NW_001256741, NW_001256690, NW_001256521, NW_001256508, NW_001256454, NW_001256441, NW_001256302, NW_001256206, NW_001256174, NW_001255979, NW_001255975, NW_001255918, NW_001255799, NW_001255727, NW_001255725, NW_001255715, NW_001255593, NW_001255580, NW_001255563, NW_001255538, NW_001255359, NW_001255287, NW_001255268, NW_001255176, NW_001255098, NW_001255078, NW_001254957, NW_001254953, NW_001254943, NW_001254754, NW_001254718, NW_001254713, NW_001254706, NW_001254653, NW_001254637, NW_001254631, NW_001254618, NW_001254516, NW_001254510, NW_001254495, NW_001254478, NW_001254477, NW_001254460, NW_001254453, NW_001254370, NW_001254293, NW_001254290, NW_001254259, NW_001254246, NW_001254223, NW_001254211, NW_001254191, NW_001254142, NW_001254087, NW_001254041, NW_001254002, NW_001253957, NW_001253952, NW_001253945, NW_001253937, NW_001253893, NW_001253861, NW_001253848, NW_001253842, NW_001253839, NW_001253838, NW_001253789, NW_001253782, NW_001253774, NW_001253716, NW_001253683, NW_001253670, NW_001253651, NW_001253608, NW_001262697, NW_001262290, NW_001262125, NW_001262070, NW_001261685, NW_001261553, NW_001261509, NW_001261245, NW_001260794, NW_001260574, NW_001260530, NW_001260376, NW_001260343, NW_001260233, NW_001260211, NW_001259947, NW_001259826, NW_001259496, NW_001259243, NW_001259232, NW_001253166, NW_001253165, NW_001253164, NW_001253163, NW_001253162, NW_001253161, NW_001253160, NW_001253159, NW_001253158, NW_001253157, NW_001253156, NW_001253155, NW_001253154, NW_001253153, NW_001253152, NW_001253151, NW_001253150, NW_001253149, NW_001253148, NW_001253147, NW_001253146, NW_001253145, NW_001253144, NW_001253143, NW_001253142, NW_001253141, NW_001253140, NW_001253139, NW_001253138, NW_001253137, NW_001253136, NW_001253135, NW_001253134, NW_001253133, NW_001253132, NW_001253131, NW_001253130, NW_001253129, NW_001253128, NW_001253127, NW_001253126, NW_001253125, NW_001253124, NW_001253123, NW_001253122, NW_001253121, NW_001253120, NW_001253119, NW_001253118, NW_001253117, NW_001253116, NW_001253115, NW_001253114, NW_001253113, NW_001253112, NW_001253111, NW_001253110, NW_001253109, NW_001253108, NW_001253107, NW_001253106, NW_001253105, NW_001253104, NW_001253103, NW_001253102, NW_001253101, NW_001253100, NW_001253099, NW_001253098, NW_001253097, NW_001253096, NW_001253095, NW_001253094, NW_001253093, NW_001253092, NW_001253091, NW_001253090, NW_001253089, NW_001253088, NW_001253087, NW_001253086, NW_001253085, NW_001253084, NW_001253083, NW_001253082, NW_001253081, NW_001253080, NW_001253079, NW_001253078, NW_001253077, NW_001253076, NW_001253075, NW_001253074, NW_001253073, NW_001253072, NW_001253071, NW_001253070, NW_001253069, NW_001253068, NW_001253067, NW_001253066, NW_001253065, NW_001253064, NW_001253063, NW_001253062, NW_001253061, NW_001253060, NW_001253059, NW_001253058, NW_001253188), PCR products (GenBank/EMBL/DDBJ accessions DQ833243-DQ833248), and unscaffolded contigs (GenBank/EMBL/DDBJ accessions ED552173-ED552188).

Genome organization

Partition of Genomic Sequences into Segments that Have Characteristic GC Contents and Differ Significantly from the GC Contents of Adjacent Segments. Several methods have been proposed in the literature for identifying segments with characteristic GC content ${ }^{7,8}$. In this study, we partitioned the genomic sequences into segments by the binary recursive segmentation procedure, DJS, as proposed ${ }^{9}$. In this procedure, the chromosomes are recursively segmented by maximizing the difference in GC content between adjacent subsequences. The process of segmentation is terminated when the difference in GC content between two neighboring segments is no longer statistically significant ${ }^{10}$.

Transposons

Details of the mariners summarized in Table $\mathbf{2}^{11}$. The mellifera subfamily of mariners was named for the first mariner discovered in bees ${ }^{12}$, and this element, AmMarl (1287 bp), has been described from bee as a relatively recent horizontal transfer into this genome ${ }^{13,14}$. RepeatScout ${ }^{15}$ built separate consensus sequences for the many internally deleted copies of AmMarl described ${ }^{13}$ and for the full-length version of AmMarl, which differs from a previously described sequence based on five copies (GenBank AY155490.1) by just six bases ${ }^{14}$. We found approximately 360 copies in genome assembly v4 that differ from the consensus by $4-5 \%$; these represent an explosion of copies from a single relatively recent horizontal transfer, with a particular internally-deleted copy becoming common. There do not appear to be any intact putatively active copies of AmMarl left in the bee genome, unlike the closely related Famarl element in the earwig Forficula auricularia even though the bee's element is younger ${ }^{16}$.

Like most other animal genomes, the bee genome has apparently been repeatedly invaded by different lineages of mariners. A second type of mariner, also in the mellifera subfamily, was originally identified as PCR clone "honey.bee.4.4"12 and a full-length consensus sequence based on preliminary genome sequence was included as $\operatorname{AmMar} 2^{17}$). RepeatScout ${ }^{15}$ generated two slightly different overlapping consensus sequences for this element, which when combined yield a 1284 bp mariner encoding a full-length ORF. There are about 100 copies of AmMar2 in the genome assembly, differing from the consensus by $6-10 \%$ and commonly affected by internal and terminal deletions, so this mariner resulted from a slightly older horizontal transfer into the bee genome, and again no intact putatively functional copies remain.

There are at least four more even older lineages of mariner family elements in the bee genome. AmMar3 is an irritans subfamily element with 83 degraded copies. There are two overlapping RepeatScout consensi that can be extended to almost full-length but still does not encode an ORF. AmMar4 is a rosa subfamily mariner (or ITmDD41D family ${ }^{18}$) with just 10 reasonably full-length copies and over 380 copies with an internal deletion of 386 bp removing most of the coding region for the N-terminus of the transposasewith over 390 degraded copies. The RepeatScout consensus fuses this with another low-copy repeat. No intact copies appear to remain in the bee genome, but a 1304 bp consensus of the 10 full-length copies does encoded a full-length transposase ORF.

AmMar4 is an irritans subfamily element with about 80 degraded copies. There are two overlapping RepeatScout consensi that can be extended to almost full-length but it still does not encode an ORF. Several copies are nearly identical in the genome, but this appears to be because they are embedded within a longer recently duplicated sequence. AmMar5 and AmMar6 are short consensus sequences of fragments of highly divergent mariners with approximately 70 and 130
highly degraded copies, respectively.repeat and refinement of the AmMar4 consensus allows recognition that it is a 918 bp element with an internal deletion removing the N -terminal coding region of the transposase gene. No intact copies appear to remain in the bee genome. AmMar5 and AmMar6 are short consensus sequences of fragments of highly divergent mariners with approximately 76 and 140 highly degraded copies, respectively.

The consensus sequences for these six mariners are:

Abstract

AmMar1 TTGGGTTGGCAACTAAGTAATTGCGGATTTCACTCATAGATGGCTTCAGTTGAATTTTTAGGTT TGCTGGCGTAGTCCAAATGTAAAACACATTTTGTTATTTGATAGTTGGCAATTCAGCTGTCAAT CAGTAAAAAAAGTTTTTTGATCGGTTGCGTAGTTTTCGTTTGGCGTTCGTTGAAAAATGGAAAA TCAAAAGGAACATTATCGTCATATTTTGCTTTTTTATTTTCGCAAAGGGAAAAACGCATCGCAA GCTCACAAAAAGTTATGTGCTGTTTATGGCGACGAAGCCTTAAAAGAACGGCAGTGTCAAAATT GGTTTGACAAATTTCGTTCTGGTGATTTTTCACTCAAAGAAAAAAAACGCTCTCGTCGTCCAGT TGAAGTTGATGACGACCTAATCAAAGCAATAATCGATTCGGATCGTCACAGTACAACTCGTGAG ATTGCAGAGAAGCTTCATGTATCACATACATGCATTGAAAACCACTTAAAACAACTTGGCTATG TTCAAAAACTCGATACATGGGTTCCTCACGAACTGAAAGAAAAGCATTTAACGCAACGCATTAA CAGCTGCGATTTGCTAAAGAAACGTAATGAAAATGATCCATTTTTAAAACGACTGATAACTGGC GATGAAAAATGGGTTGTTTACAACAATATCAAGCGGAAAAGATCGTGGAGCAGGCCACGTGAAC CAGCTCAAACAACATCAAAAGCTGGTATTCATCAAAAGAAGGTTTTGTTATCAGTTTGGTGGGA TTACAAAGGAATTGTCTATTTTGAACTCTTACCACCCAACCGAACGATCAATTCTGTTGTCTAC ATTGAACAACTAACGAAATTAAACAATGCAGTTGAAGAAAAGCGGCCCGAATTGACAAATCGAA AAGGTGTTGTATTCCATCATGACAATGCAAGGCCACACACATCTTTGGTCACTCGGCAAAAATT ATTGGAGCTTGGTTGGGATGTTTTGCCACATCCACCATATAGTCCTGACCTTGCACCATCTGAT TACTTTTTGTTTCGATCTTTACAAAACTCCTTGAATGGTAAAAATTTCAATAATGATGATGATA TCAAATCGTACCTGATTCAGTTTTTTGCTAATAAAAACCAGAAGTTTTATGAACGTGGGATTAT GATGCTGCCTGAAAGATGGCAAAAGGTCATTGATCAAAATGGGCAACACATTACAGAATAAAGT TATTTAGTTCCATGAAAAAATTGTCTTTGATTTTCTAAAAAAAATCCGCAATTACTTAGTTGCC AACCCAA

AmMar2

TTAGGTCTACCGGAAAGTTCTGTCCGAATCTATGACATCATTTTCGCCACGTAAGCACATGTTT АТTTATTGCATGTTCGGCTCTATATTTTTATCGCTTAATGTATACATACTGACGTAGCAAATAA AСTATAATAAAGTTGATTCACATTAGTCTTAAGTGTGAAACGATAGTATACCCATGGCGACTGA TAAAGTTCATTTACGCCACTGTATTTTATACGAATTTCAACAAGGAAGAAATGCTACAGAAGCA TGTAGAAATTTATTGAAAGTGTTTGGTGAAGGTACAGTTTCTGATAGGACATGCAGAAGATGGT ACGAAAAATTTGAAACAGGTGATTTCGACCTTTCTGATAAGCCACGTTCTGGGCGACCATCTTT GATCGACGACGATGTTGTTAAGGCAATGTTGGAGCAAGATCCTTTTCTGACAACATCGGAGATC GCAGAAAGGCTTAATTCAGCTCAACAAACCATTTCTGACCATATTCGGAAGATAGGATTGGTGT GGAAGTATTCAAGATGGGTGCCACATGAATTAAGTCAGAAAAATTTGGATGATCGAGTTGTCAT ATGCACATCTCTGCTTGCTCGGAACAAAATCGAGCCCTTTTTGAACCGGATGATAACTGGGGAT GAAAAGTGGATTACATACAACAACATTGTAAGGAAAAGGGCATATTGTGAACCCGGAAAACCTA GСССТTССАССТСТАААССАААТTTGACTCTGAATAAGAGAATGTTGTGTATATGGTGGGACAT TCGAGGACCAATATATTATGAGCTTTTAAAACCGAACGAAAAGCTCAATTCGGAGAAGTATTGT CAGCAACTGGATAATTTAAAGACAGCGGTCCAAAAAAAGAGGCCGGCAATGTTCAATAGGAAGG ACATGATACTGCACCACGATAACGCCAGACCACACGCTGCTTTAGGGACTCGTCAAAAAATTGC AGAAGTAGGCTGGGAAATTCTGTCGCACCCACCATATTCCCCGGACATAGCACCCTCTGATTAT САСТTGTTTTTATCCTTACAAAATTTTTTGACGGGCAAAAAATTCAAAAATGAAGAAGATGTAA ААТААТСАТТАТTTAAATTTTTCATATCAAAATATAAAATATTTTTAAAAAATGGAATATACAA

ATTGCCCTCACGCTGGCAAGAGATCATTAATAATAATGGCAATTATATTATTCAATAAAGTTAA TTGGCGGTAAGAAAAAATTTGTATTTTGTTTTATTCCAAAAACGGACAGAACTTTCCGGTAGAC CTAA

AmMar3

AAGGGTGTCCCAAAATTAACGCAAGATATGAATTTGCCGCTATTTTTGCATTAAGTTGTTGGCA ACCCTGAAAAAAGAACAGTTTGACAGCTGAGAGTTTAGTGTTAGTAAAAATGGAGCGTTATACG ATACAACAACGTGTCTTCATTATTGAACAATATTTTAAAAATAATGAAAGTTTGGCGGCCGCAG TTCGAAAATTTTATACAAAATATGATAAAAATAGTGTTTTAACCTCGTCAACTGTGAAAAGATT AATTGAAAAATTCGTGGAGACTGGATCAGTTGGAGACGCTAAACACACCGGTCGTCCAAAAACA AGCCGTTCAAATGTCAATATTGAAGCAGTGCGTGAGAGTGTTGGTGAAAACCCAGGAACATCAA TTCGGCGTCGTGGACAAGAATTGCAAATTTCAAGAAGCTCTCTACAGCGTATACTCACAAAAGA TCTGTGTCTTCATGCTTACAAAATTCAATTAACACAACAACTGAAGCCTAATGACCATGAACAG CGAAGAGAGTTCGTGGAATGGATTATTAATCATCAAAAAGTGGATGCTGGTTTTTCGAGCAAAA TAATCCTAAGCAATGAAGCACATTTTCACCTCGATGGCTTTGTTAATCGCCAAAATTGCCGTGT TTGGGGTTCGGAGAACCCACGTGTGATTAGCGAAAAACAAATGCATCCACAACGTGTCACTTTT TGGTGCGGATTTTGGGCAGGAAGCATCATCGGACCATACTTTTTTGAGAATGAGGCTGGTCAAG CAGCAACTGTTAATGGTGCTCGATATCGCGATATGATAACACAGTTCTTTCTGTCGAAATTGGA TGATATTGATGTGGCCAATATGTGGTTTCAACAAGACGATGCCACATGCCATACAGCCAATGAA AСААТTCAATTACTGCATGAGACATTTCCTGGTCGTGTACTCTCTCGTTTCGGTGATCAGAATT GGCCCCCTAGATCATGTGATTTAACACCATTAGATTTCTTCTTATGGGATTATTTGAAATCAAA GGTCTATGTCAACAATCCCACAACCACACGTGCATTACAAGAGGAAATTAAACGCTGCATCAAT GAAATTCAACCACAATTATGCAGAAAGGTCATGAAAAATTTCGACGAAAGGGTGCGTATGTGCC AGCAAAGCCGTGGAGGCCATTTGCCCGATGTGTTATTCCATAAATAACCCTATCCTATGTACTT TATGATTCACTTAAAAAATAAATATCTAAAGAATAAAAACTCTCTTTTATATTTAATTCAAATC TTGCGTTAATTTTGGGATACCCTT

AmMar4

TGCATCAGGTTGGAAAGAAGGTTTTCACGATTTTTATATTGATATATTGATTTTATATTGATTT AAATGCTCTATTTTTGATTAATGCAAAATTCTATTGGTTTTGTATATAATTTTAATTTTGCATT TTTCGCTTTATGAAAATATCATATTTTATTTTCAAATTAGTTTTTCTGATTTCTTAAGTTATGT TAAAGACATAATGAACAAGAATTCGAACAATTTTCCTATTCAAACTAAATCGGAAAACTACGAA AACAATTCGCGAAGCGTTTGGGAATACTAACAAACATACAATATCAACGAAGTGTTTGGGTTTA TTAACAAACATACTGCATATTGGTGGTTTAAAAAATTTTGATGACGAAAGCCTTGAAGACAATC AGCGCTGTAAAATTAGCTATCAGATATTGACAATAGTGACTTGAAGATTCTAGTTGAAGCTAAT ССТСАTACAACCGTACGGAAGTTTGTTTCTGAATTGAATGTAAAGCATATAACAATTTATAATC ATTTAAGAAAATTGGAAAAACAAAAAAGCTTGATAAATTGGATGCTTGATTGGGTGCCGCGACC CAATTAAATTAAAGAAAAAAAAAATCATTGTTTTGAAATATCATCTGCCCTTCTTTTGCGCAAT AAAAATGATTCATTTTCTCGAAGGAATTGTAACGTGCGATGAAAAATGGATTCTTTATAATAAT TGGCGACGATCGACTCATTGACTAGATCAAGACGAAGCTTCACAACATTTCCCAAAGTCAAAAT TTCACCAAAAGAAGATCATAATGATAGTTTGGTGGTCTGTGGCCAGTTTGATTCATCACAACTT ССTGAATTCTGGCGAAACTATTACAACTAAAATGTACTGTCAATTCGATGAAATGCACGAAAAA СTTCGTTTGTGTCCAATATTGCTCAACAGAAATGTTCTATCCTTCTCCACGATAATGCTCCGTC АСАСGTCGCTCAACTGATCCTTTAAAAATTGAACGAATTGGCCTACAAAАСТСТАСТТТАТССА TACTTGCTAAATCTCTTATCCACCGATTACCATTTTTTCAAGCATTTCGACAACTTTTTATATG AGAAATGCTTCAAATCCCAGAAAGATATTGAAACAGCATTCAATGAATTTGTTGCCTCCAAGAT TTCAGAATTTTATTCAACCGGAATAACAAAAGTTGTTCCTTATTGGGAAAAGTGCATTGATTAA

AATGATTTTTATTTTAATTAATAAAGTTCTGAATTGAAATATGTGTATTTAAATTTAATAGTTA AAAACCGCAAGAACTTTCTTTCTAATCTAA

Abstract

AmMar5 TATATAATATAAAATGAGTAAAAGTTGTTAAAAAATCACATCCTTTAAAACGTTTTTTACTATT CAATATGAATAGCAAAAGGAAGCATTTGCGGCATGTTATACTTTATTTTTTTAAAAAAAGGTGA TAATGAAAATGATACTGCAGATGAAATTTGTATTGTTTACAGGAATGATGGTATAACCATTACG ACCATCCATAATTGGTTTGAGAGATATAGTGCTGGCAATTTTGACTTGAAAAATGAAGGACCCT ACGGCCATCCAGCAACGATAAATATGGATGTTATCAAGACCATGCTTGCTGAAAATCCGCGATG CACAGTGTGCAAGAGATAGTGAATGCCATTAATATTTCCAGGAAAGCTGTAGATAATTTTTGGA GAATTTGGGTTCTACAGCTATTGATGAAAACCGACTTTATGAAATAAAGTCTCTATGTGCAATT TССТТСТTСАAAGACATGAAAGAGATCTTTTTTTAAAGAGGCTTATCACTGAAGAGTAGACTTG GATTTTGTATCAAAATGTATCGAAAACGCACTTGATTTAAGAACGATAGACCTTCAACTGTCGC GAAACCTAGACTTCGCGAAACCTGAAGAAAGTTTTTTTATCCATTTGTTGGGATTGGAAATGTA TAATCTATTATGAGCTCСTTTCTCAAAATAAAGCTCCTTTCTCATCAATTTTAGAAAATATTCT TTTCGTGATAAATGGCTCCAATTCGTAAGCGAAAAAAAACGCACTTCGAGGAATATTTTGTAAA TAAACCCCAACAATTTTGGAAAAAGAGAGGCTTTCTGAGAAATAGAAGAACAAAACGATGATAG AGCAGAATGATTCATATATAATACAATAAATTAATCTTAAACAAAAAATATCGTATATTCATTT CGTA

AmMar6

ACTTGGATTTTATATCAAAATATACATTGAAAATGCATTTGATTTAAGAACAATAGATCTTCAA TTGTCGCGAAGCTTGGACTTCACCCGAAGAAAGTTCTTTTGTTCATTTGATGGGATTGGAAAGA AGTAGTTTATTATGAGTTCCTTTCTCAAGATGAAATCATCAATTCTAGAAAATATTGCAATCAG CTTGATAAAATTAAAAAAGCCATAGCAGAAAAACGACCAAAATTGGCAAAATGATGAGGCCATC ACGACAATGCAAAACCACATGTTGCATTGACTGTAAGAGAAAAGCTGTTACAGTTTGATTGGGA TATTCTATTGTATCTTCTGTATTCTCCAGATCTTGCTCTATCCTACTATTATTTGTTCCTGTTA TTAAAAAATTCTTTTCATGATAAACGATTCCAATTCGTAAGCGAAATAAAAACGCATCTCGAGG AATATTTTGCAAATAAACTCCAATAATTTTGAAAAAAGAAAATAATGAAAATTTATAAAAGATA AAAAAAAATAATAGAACAGATCATTTAATATATAATAAAATAAATTAATCTTAAACAACAAATA TTATATATTTATTTCATATCAAAA

Searches for other transposons: No matches were found in searches of assembly v3 using TBLASTN, and of the official and ab initio protein sets using BLASTP, for transposons and transposases of the mori subfamily of mariners (or ITmDD37D/maT family), gambol (ItmDD34E), Tcl (ITmDD34E), and other families in the IS630-Tcl-mariner or ITm superfamily that are widespread in animal and other genomes (e.g. ${ }^{18-21}$). The bee genome appears similarly devoid of other major DNA transposon superfamilies such as piggyBac ${ }^{22}, \mathrm{P}$ elements, Transibs, and helitrons ${ }^{23}$. We also examined all of the high and medium copy repeats identified by RepeatScout for ORFs in hopes of identifying additional transposons encoding little or no similarity to known transposases/integrases. This approach is based on the ability to reconstruct intact consensus sequences for transposons from many degraded copies in a genome (e.g. AmMarl and 2 above ${ }^{14,23}$), and should allow identification of recently active transposons. No candidates beyond AmMarl and 2 were discovered this way. Additional more intensive searching of this genome as described ${ }^{23}$ might eventually lead to discovery of new transposons in the bee genome.

Gene Sets

Gene Predictions. Six gene prediction sets were independently generated. The NCBI gene prediction process included cDNA, EST and protein alignments, using Splign and ProSplign ${ }^{24,25}$. The best scoring CDS was identified for all cDNA alignments, using a 3-periodic fifth-order Markov model for the coding propensity score and WMM models for the splice signals and translation initiation and termination signals. These are the same scores used with Gnomon ${ }^{26}$, the NCBI $a b$ initio prediction tool. All cDNAs with CDS scoring above a certain threshold were marked as coding cDNAs, and all others were marked as UTRs. Some of the CDS were incomplete, meaning that they lacked a translation initiation or termination signal. All protein alignments were scored the same way, and CDS that did not satisfy the threshold criterion for a valid CDS were removed. After determining the UTR/CDS nature of each alignment, they were assembled using a modification of the Maximal Transcript Alignment algorithm ${ }^{27}$, taking into account not only exon-intron structure compatibility but also the compatibility of the reading frames. Two coding alignments were connected only if they both had open and compatible CDS. UTRs were connected to coding alignments only if there were necessary translation initiation or termination signals. There were no restrictions on the connection of UTRs other than the exonintron structure compatibility. All assemblies with a complete CDS, including the translation initiation and termination signals, were combined into alternatively spliced isoform groups. Incomplete assemblies were directed to Gnomon for extension ${ }^{26}$.
The Ensembl gene predictions were built using an iterative strategy, based on both protein and EST evidence. The method was adapted from Curwen et al. 2004 ${ }^{28}$. First ESTs from dbEST and Riken were aligned to the honey bee genome. The first-round gene predictions were made using alignments of Uniprot proteins to the genome, with gene structures created by Genewise, an evidence-based gene predictor ${ }^{29}$. These first-round protein-based gene predictions were combined with the spliced EST-based gene predictions to yield a non-redundant set of highconfidence transcripts. The second round of gene predictions concentrated on the gaps between the first-round genes of greater than 5 kb . These gaps were re-aligned to Uniprot using Blast, and the resulting hits were used to seed a second run of Genewise in these gaps. The resulting transcripts were again collapsed down to a non-redundant set.

The "Evolutionary Core set" used a homology-based gene prediction pipeline, which relies on similarity to known proteins to identify putative genes and uses orthology to identify evolutionary conserved core of genes (E. Zdobnov, unpublished). The pipeline consists of the following steps: 1) identification of all genomic regions with significant homology to known proteins by applying TBLASTN ${ }^{30}$ searches to a comprehensive, non-redundant collection of protein sequences, e.g. Uniref5 $0^{31} ; 2$) identification of matches that are consecutive along the protein and genome to delineate gene loci; 3) selection of the most similar in sequence and well defined proteins for each of these genomic regions with protein-coding potential; 4) use the selected protein for homology-assisted gene prediction using Fgenesh ${ }^{32}$; and 5) identification of orthologous gene relations ${ }^{33,34}$ among candidate gene predictions across several species through application of all-against-all Smith-Waterman comparisons to discriminate the conserved core genes. This lightweight schema targets to acquire a sensitive and unbiased view of evolutionary conserved core of genes in multiple genomes rather than produce a full catalogue of genes. However, it performed very well in comparison to more sophisticated pipelines described above and it seems particularly suited for studying divergent genomes where only limited EST or cDNA data are available.

Two gene prediction sets were generated at Softberry Inc using Fgenesh and the Fgenesh++ pipeline ${ }^{32,35}$. Fgenesh is a HMM based ab initio gene prediction program. Fgenesh++ is a pipeline for automatic prediction of genes, which in addition to Fgenesh, includes sequence analysis software to incorporate information from full-length cDNA alignments and similar proteins from the eukaryotic part of the NCBI NR database (without predicted Drosophila proteins). Both Fgenesh and Fgenesh++ used bee-specific gene-finding parameters trained on known genes of organisms closely related to honey bee.

Another gene prediction set (the "Drosophila Ortholog"set) was developed by mapping D. melanogaster gene models onto the honey bee genome using the comparative gene finder GeneWise ${ }^{29}$ to build gene models, and a modified reciprocal-BLAST approach to assign orthology/paralogy relationships (V.N.Iyer, D.A.Pollard and M.B.Eisen, unpublished). Candidate regions for building gene models were identified on the honey bee genome scaffolds by TBLASTN with D. melanogaster translations as query, followed by clustering of the HSPs. GeneWise was used to build gene models in these regions with the D. melanogaster translation as evidence, and the resulting gene models were compared back to the set of D. melanogaster translations using BLASTP. Orthology/Paralogy relationships were assigned by a heuristic algorithm that takes into account (a) the rank of the starting D. melanogaster translation in the BLASTP results, (b) the rank of alternative translations from the gene corresponding to the starting D. melanogaster translation, and (c) whether or not there were highly ranked hits to genes other than the gene corresponding to the starting D. melanogaster translation. Hits having e-values within one order of magnitude were considered to be equivalently ranked. "One-to-one orthology" was assigned when there was a single honey bee gene model and the only top-ranked hits in the BLASTP results for that model were translations from the gene corresponding to the starting D. melanogaster translation. The final Drosophila Ortholog set consisted of the one-toone ortholog models.

The individual gene prediction sets were integrated using GLEAN ${ }^{36}$. GLEAN is a tool for creating consensus gene lists by integrating gene evidence (Mackey et al., personal communication). It uses Latent Class Analysis to estimate accuracy and error rates for each source of gene evidence, and then uses these estimates to reconstruct the consensus prediction based on patterns of agreement/disagreement observed between each evidence source. The GLEAN analysis integrated the following gene prediction lists: NCBI, Ensembl, Fgenesh, Evolutionary Core, and Drosophila Ortholog, as well as aligned proteins and ESTs. The Fgenesh set was selected instead of Fgenesh ++ as an input data set, because Fgenesh is an ab initio program that does not use homologue evidence, and was expected to increase the overall yield of genes in the consensus set. The proteins were from metazoan SwissProt, aligned using EXONERATE ${ }^{37}$ with a minimum score 50 , using only the highest scoring of overlapping sequences. The ESTs were consensus dbEST and Riken ESTs aligned using TGICL ${ }^{38}$ with a minimum 95% identity and 90% alignment coverage. GLEAN analysis labels each prediction with a confidence score reflecting the underlying support for that gene. Evaluations using manually curated gene models built from evidence that was not used in the training sets (gold standard gene models) showed that the GLEAN consensus gene models were superior to the individual input gene models ${ }^{36}$. These evaluations used FASTA ${ }^{39}$ with 100% alignment coverage, at least 99% identity and no gaps for identity matches and at least 95% identity, not considering gaps or alignment coverage for presence (weighted by number of genes in a prediction set).

Functional Predictions. The functions for 70% of the GLEAN consensus gene models were reliably inferred as described ${ }^{40}$. A complete list of all proteins that show any annotation with features from InterPro, SwissProt keywords, Enzyme database, GO information, and family members present or absent in other insect genomes is available from ProtoBee (www.protobee.cs.huji.ac.il).

Analysis by a consortium.

The annotation consortium used tools at BeeBase and elsewhere to manually annotate gene models using standard operating procedures developed by community members and BCMHGSC. Gene models were submitted to the BCM-HGSC annotation database and included transcript and protein sequences, exon coordinates, homolog identifiers, functional descriptions, multiple alignments of gene families, phylogenetic trees, and comments about corrections to GLEAN gene models. Following transfer to BeeBase, each gene model was mapped to the assembly (version 2), then viewed using the Apollo annotation browser to verify splice sites, identify redundant submissions and assign "GB" identifiers ${ }^{41}$. New gene models and corrections to the GLEAN set were incorporated into a second release of the OGS.
Annotation of chromosome 15 and 16 superscaffolds. The chromosome 15 and16 superscaffolds containing approximately 6.5% of all bee genome were selected as the most representative part of genome with respect to genomic landscape and genetic properties. They contain a conservative HOX locus, one of the odorant chemoreceptor clusters and dozens of bee genes -human orthologs- associated with human diseases. Also the euchromatic part of chromosome 16 is abundant with CpG islands associated with mRNA starts of specific genes that was unusual for the known insect genomes.

We generated gene prediction data sets, BLAST hits to known protein/ EST/mRNA. Using Apollo Genome Annotation Curation tool ${ }^{42}$ we carefully inspected each gene model and gene evidence and then manually curated 720 and 337 gene variants for 15 th and 16 th chromosomes respectively, of which 5 and 7 are tRNAs, 5 and 14 are pseudogenes with multiple frame shifts, and 71 and 62 are splice variants for the chromosomes 15 and 16 respectively.

About 188 and 116 gene models of the OGS (15th and 16th chromosome respectively) were significantly corrected by merge/split transcripts, adding/removing exons, adjusting alternative splice sites. Using BlastX, PSI- , PHI-BLAST searches we assigned putative functions to 639 and 254 protein-coding genes (15 th and 16 th chromosome respectively). Sequence and annotation data on these superscaffolds are available through Genome Browser Web site: racerx00.tamu.edu/...

48 and 23 new protein-coding gene models (15th and 16th chromosomes respectively) were added to the OGS, including 40 and 15 that were previously supported by only Fgenesh $a b$ initio gene models. 56 and 21 transcripts of two superscaffolds were assigned as problematic because their genomic sequences contained gaps between contigs, insertions/ deletions and caused open reading frame shifts or ORF truncations.

The deficiency of EST data was compensated by extensive using of protein information orthologous sequences annotated from genomes Drosophila, Anopheles, Homo sapiens, mouse and rat. Even though the 35% of annotated gene models were not covered by at least one spliced EST sequence the extensive protein similarities to preliminary described protein sequences allowed us to assign ORF and known protein function for more than 90% of the gene models. It is not excluded that enhanced manual annotation of all chromosomes with a using of additional

EST data allows us to exceed our preliminary gene estimations, because even with a deficiency of EST data we could create about 1057 gene models for only 6.4% of honeybee genome.
MicroRNA identification. Candidate microRNAs were identified using three different methods. First, sequences with homology to mature miRNAs from other species were identified. BLAST of the assembly (v. 2.0) using known miRNAs (release 7.0
http://microrna.sanger.ac.uk/sequences/index.shtml) identified several hundred provisional candidate bee miRNAs with significant matches to miRNAs from other species (E value ≤ 0.01, wordsize 11). Refined alignments of the identified genomic regions ($+/-\sim 100 \mathrm{bp}$) surrounding each were generated using Water (EMBOSS). Second, the bee genome was exhaustively searched for microconserved sequence elements (MCEs) ${ }^{43}$ with exact matches to A. mellifera, D. melanogaster and A. gambiae. Finally, additional putative miRNAs were predicted using a new algorithm designed to scan segments of the A. mellifera genome for structural and thermodynamic characteristics found in miRNA precursors - stem-loop scanning (SLS), which shares some features of previously described procedures ${ }^{44}$. Apis sequences identified by SLS were compared to similar sequences generated by implementation of SLS on the D. melanogaster genome. This third class of miRNA candidates consisted of SLS sequences in A. mellifera that aligned well with SLS sequences in D. melanogaster. Each candidate miRNA from all 3 sets, homologs, MCE and SLS, was folded to verify the thermodynamic propensity of the precursor miRNA to adopt appropriate hairpin secondary structure - with the mature miRNA residing in the stem. Table S 7 presents microRNAs that were found.
Tiling array experiments. Briefly, 6,503,344 36-mer probes were selected uniformly from both strands of the entire A. mellifera genome with an average spacing of 10 bases between the neighboring probes. The arrays were designed from the V3.0 assembly, in order to provide the best available sequence at that time, but then the oligonucleotides were mapped back to V2.0, because that was the assembly that the OGS was derived from and thus the sequence that the gene coordinates referred to.

The chosen probes were divided into 17 groups and synthesized on 17 glass-based arrays using a maskless array synthesizer ${ }^{45}$. The arrays were hybridized in a single measurement with poly-A RNA pooled from multiple bee tissues and life-stages. Standard procedures were used for RNA amplification, labeling, hybridization, scanning and data post-processing ${ }^{45}$. A gene was considered transcribed if the probes within it showed high signals. This was determined based on a probability-based score that reflected the likelihood that the probes showed high-signals not by chance alone.

In whole-genome tiling array experiments, single measurement has been sufficient to generate meaningful information, because (i) the purpose of the experiment is genome-wide transcript discovery rather than differential gene expression monitoring, (ii) sufficient redundancy is built into the probe selection procedure to provide multiple observations from several oligonucleotide probes for each long transcript, (iii) data from the oligonucleotide arrays used here had shown high level of reproducibility ${ }^{45-47}$. However, key results from the above experiment were further confirmed with additional measurements as described below:

Confirmation array. A new array containing 388,422 36 -mer probes was designed. The probes represented OGS genes, ab initio predicted genes, novel intergenic transcripts and few predicted miRNAs. The array was hybridized with a new pooled RNA sample. Single measurement was performed.

GC-rich region array. A new array was designed with 189,000 50-mer probes tiling both strands of 15 longest GC-rich chromosomal regions without OGS genes. Two hybridization experiments were performed on the new array measuring the same pooled RNA sample.

RT-PCR. RT-PCR experiments were perfomed on 24 genomic segments from four categories: (a) five long OGS exons untranscribed in the tiling arrays, (b) five ab initio predicted genes with strong tiling array signals, (c) five novel intergenic transcripts from the AT-rich regions of the genome, and (d) ten novel intergenic transcripts from the GC-rich regions. Orthology mapping. Orthologous relationships between genes of honey bee, fruit fly, mosquito, human, chicken and fish were inferred through all-against-all protein sequence similarity searches using the Smith-Waterman algorithm and retaining only the longest predicted transcript per locus. The orthologous groups were formed then by: grouping recently duplicated sequences with over 97% identity within genomes to be treated subsequently as single sequences, forming triangles and tuples of the mutually reciprocal best hits between genomes, and expanding the seed orthologous groups by inclusion of co-orthologous sequences that are more similar to the othologous gene than to any other gene in any other genome, requiring also that all members of the group have matches overlapping by at least 20 residues. All orthologous classifications and the corresponding species copy-number distribution are available from http://cegg.unige.ch/SUPPL/Bee/. Orthology relations were not significantly influenced by the particular gene set used as shown in Supplementary Tables S8 and S9.
Circadian rhythms. The honey bee genome encodes a single orthologue for each of the "clock genes" period (per), timeless (tim), cryptochrome (cry), clock (clk), cycle (cyc), vrille (vri), and Par Domain Protein 1 (pdp1). There are no orthologues to Cry-d (Drosophila-type Cry) and Timeless 1(Tim1) genes, which are essential for clock function in Drosophila. The honey bee genome encodes only the mammalian-type paralogues (Cry-m, and Timeout $=$ Tim2) which are thought to have different clock function ${ }^{48}$. Honey bee AmCRY lacks C-terminal domains implicated in dCRY photoreceptor function in Drosophila but domains that are implicated in the function of CRY-m (mammalian-type) proteins are highly conserved ${ }^{49}$. The honey bee orthologue of tim2 (amTIM2) does not contain domains implicated in the negative feedback function of dTIM1 in Drosophila. These analyses suggest that AmCRY and AmTIM2 fill different clock functions than dCRY and dTIM1 proteins. $A m C Y C$ and $A m C L K$ are similar to orthologues of other insects. However, a transactivation domain is found on the C-terminal end of AmCYC as in mammals. In contrast, Drosophila has a transactivation domain in dCLK but not in dCYC^{49}.

These findings raise two questions: first, how did honey bees and mammals end up with similar clock proteins and flies with different ones, and second, does the honey bee clock work like the mammalian clock? In terms of the first question, phylogenetic analyses show that the basal animal lineage had both the mammalian and Drosophila types of Cry and Tim ${ }^{49}$ (Supplementary Figure S9). Drosophila specialized on using one set of orthologues; both mammals and honey bees lost these orthologues and specialized on the other set. In terms of the second question, the temporal pattern of clock gene expression in the honey bee brain is more similar to mammals than to Drosophila ${ }^{49}$. These findings challenge the distinction commonly made between insect and vertebrate clocks and raise critical questions concerning the evolution and functional significance of species-specific variation in the molecular clockwork.
The honey bee cys-loop ligand-gated ion channel superfamily. The honey bee genome has revealed a cys-loop neurotransmitter-gated ion channel ${ }^{50}$ superfamily consisting of 21 subunit members, two less than Drosophila although the honey bee possesses an extra nicotinic
acetylcholine receptor subunit ${ }^{51,52}$ (deposited in GenBank/EMBL/DDBJ under accessions DQ026031-DQ026039 and DQ667181-DQ667195). Members of this superfamily are known to play roles in many aspects of honeybee behaviour including foraging, learning, memory, olfactory signal processing, mechanosensory antennal input and visual processing ${ }^{53-58}$. Uncharacterized subunits may well represent novel key components of the honey bee nervous system. The superfamily also contains targets for imidacloprid (nicotinic receptors) and fipronil (GABA receptors), which are widely-selling insecticides used in crop protection ${ }^{59,60}$. Understanding how insecticides interact with target receptors will help in the development of improved compounds that selectively act on pest species and spare beneficial insects.

The accession numbers of the sequences used in constructing the tree are: Apis mellifera Amel $\alpha 1$ (DQ026031), Amel $\alpha 2$ (NM_001011625), Amel $\alpha 3$ (DQ026032), Amel $\alpha 4$ (DQ026033), Amel $\alpha 5$ (AY569781), Amel $\alpha 6$ (DQ026035), Amel $\alpha 7$ (NM_001011621), Amel $\alpha 8$ (AF514804), Amel $\alpha 9$ (DQ026037), Amel $\beta 1$ (DQ026038), Amel $\beta 2$ (DQ026039), Amel RDL (DQ667181), Amel GRD (DQ667183), Amel LCCH3 (DQ667184), Amel GluCl (DQ667185), Amel HisCl1 (DQ667187), Amel HisCl2 (DQ667188), Amel pHCl (DQ667189), Amel 8916 (DQ667193), Amel 12344 (DQ667194), Amel 6927 (DQ667195); Drosophila melanogaster D $\alpha 1$ (CAA30172), D $\alpha 2$ (CAA36517), D $\alpha 3$ (CAA75688), D $\alpha 4$ (CAB77445), D $\alpha 5$ (AAM13390), D $\alpha 6$ (AAM13392), D $\alpha 7$ (AAK67257), D $\beta 1$ (CAA27641), D $\beta 2$ (CAA39211), D 33 (CAC48166), GluCl (AAG40735), GRD (Q24352), HisCl1 (AAL74413), HisCl2 (AAL74414), LCCH3 (AAB27090), Ntr (NP_651958), pHCl (NP_001034025), RDL (AAA28556), CG6927 (AAF45992), CG7589 (AAF49337), CG8916 (AAF48539), CG11340 (AAF57144), CG12344 (AAF58743); Caenorhabditis elegans UNC-49 (AAD42386), GLC-1 (NP_507090) and representatives of the five major C. elegans nicotinic acetylcholine receptor groups ${ }^{61}$, ACR-16 (P48180), UNC-63 (AAK83056), ACR-8 (NP_509745), UNC-29 (P48181) and DEG-3 (P54244) as well as CUP-4 (AAT42012), which represents the "orphan" subunit group, are shown in brackets. The scale bar represents substitutions per site.
Transcription factor binding motifs. Genes with caste-specific patterns of expression were used to search for transcription factor binding motifs. AlignACE, MDscan and MEME algorithms ${ }^{62-64}$ were used with $1,000 \mathrm{bp}$ regions upstream of GLEAN3-predicted genes to search for motifs.
Identification of regulatory motifs involved in the development of behavior. We scanned a region of 2000 bp upstream of the translation start site for each gene in each bee gene set. We performed a comprehensive scan of promoters for transcription factor binding sites, modeling the binding specificity of each transcription factor by a position-specific weight matrix (PWM). We used the computer algorithm Stubb ${ }^{65}$ to score a promoter for matches to PWMs. The Stubb algorithm was previously found to accurately predict cis-regulatory modules involved in the segmentation pathway in Drosophila ${ }^{66}$.
Venom. Honey bee venom contains components that are non-allergenic to humans and other vertebrates, as well as at least six allergenic components (phospholipase A2, hyaluronidase, acid phosphatase, melittin, Api m 6 and CUB serine protease). Recently, three novel venom proteins were found: one with a platelet-derived and vascular endothelial growth factor domain, venom protein 2 (not related to any known protein) and a major royal jelly protein family member MRJP9 ${ }^{67}$. The annotated genome points toward several other candidate venom allergens (Supplementary Table S13). At least 9 honey bee homologues of allergens from other insect species were found including antigen 5 , a venom protein found in several wasps, hornets, fire ants and yellowjackets but has not yet been studied in honey bees. Several homologues of
scorpion and snake venom proteins and peptides were likewise identified: desintegrins, neurotoxins and anticoagulant peptides, all of which have promise in understanding allergic responses and improving prophylactic or therapeutic treatments. Having the honey bee genome sequence available has also help understand the phenomena of Api m 6 heterogeneity, previously known mainly from the protein realm ${ }^{68}$. It was shown that substantial protein-level variation for Api m 6 arises from genome-level polymorphism at a single locus.
Heat Shock Proteins/Chaperones. Heat-shock protein genes (hsps) are nearly universal in organisms, highly-conserved and assigned to families on the basis of sequence homology and typical molecular weight ${ }^{69-71}$. Despite being one of a very few endothermic insects ${ }^{72}$ and having extraordinary levels of thermotolerance (they develop in and live in colonies whose temperatures are $33-35^{\circ} \mathrm{C}$ and even survive $50^{\circ} \mathrm{C}$ for up to 1 hour; Elekonich and Roberts, unpubl.) honey bees do not show an increase in the number of genes encoding hsp70 family members with 6 in the bee in comparison to 5 in the fly and 8 in humans.

Hsp70 proteins often function in protein complexes with Hsp90 and Hsp40 ${ }^{73}$. In both the hsp40 and hsp90 gene families the honey bee resembles the human more than the fly. Hsp90 family proteins are involved in signal transduction and ligand binding as well as responding during cellular stress. Although there are 4 hsp 90 s in honey bee, only one $h s p 90$ in Drosophila, and 2 in human, there are 5 hsp 90 s in Anopheles suggesting that Drosophila is unusual for an insect. In the honey bee the $h s p 40 / d n a j$ family comprises 25 genes making it more similar to the human $h s p 40$ family which has 44^{74} than the fly which has 5 family members. There are 39 putative hsp40s in Anopheles again suggesting that it is the fly that is unusual.
Nectar and pollen utilization. Annotation of 174 genes encoding carbohydrate-metabolizing enzymes and 28 genes encoding lipid-metabolizing enzymes, based on orthology to their counterparts in the fly and mosquito, shows the majority of genes have simple, 1:1:1 orthology (Apis: Drosophila: Anopheles). The noticeable changes in one or more species are more common in enzymes of glycolysis and gluconeogenesis, suggesting the number of genes for carbohydrate metabolism is less conserved than for lipid metabolism ${ }^{75}$. Some enzyme types with particularly striking changes in gene number include acyl-CoA oxidase ($2: 6: 6$), acylphosphatase ($2: 6: 2$), and pyruvate kinase (2:6:1). Three glycolysis/gluconeogenesis genes have 2:1:1 orthology - pyruvate dehydrogenase, dihydrolipoamide dehydrogenase, and phosphopyruvate hydratase - representing either recent duplications in Apis or gene losses in the dipterans.

Two enzymes found in the dipteran species, glucose-6-phosphatase and the monomeric trehalose-6-phosphate phosphatase, appear to be completely missing in the current assembly of the Apis genome. As glucose-6-phosphatase activity has been described in honey bee flight muscle ${ }^{76}$, it is possible that another phosphatase has shifted its specificity to fill this role. However, if these are true gene losses, bees would be left with a single functional pathway by which to convert gluconeogenic substrates to both of the primary carbohydrate energy stores used by insects, trehalose and glycogen.

Among other metabolic proteins are several unusual carbohydrate-metabolizing enzymes with important roles in honey bee biology. Glucose oxidases contribute antiseptic activity to honey by producing D-gluconic acid and hydrogen peroxide ${ }^{77}$. So far, this is the only known example of a glucose oxidase gene to be found in an animal genome. Phylogenetic analyses suggest that GLOX evolved from a gene encoding glucose dehydrogenase (GLD). There are three glucose dehydrogenase/glucose oxidase genes in the Apis genome. These genes are more distantly related to glucose-methanol-choline (GMC) oxido-reductases, a group of FAD
flavoproteins with diverse but poorly understood catalytic activities. There are 21 members of the GMC family in Apis compared to 16 in Drosophila.

Honey bees may also extract nutrients from pollen grains that are their primary protein source. Contrary to previous beliefs that bees do not have the enzymes needed to digest complex carbohydrates ${ }^{78}$ the bee genome contains an active gene encoding cellulase belonging to the GHF9 family of glycoside hydrolases ${ }^{79}$.
Antioxidants. Aerobic organisms have evolved an elaborated network of enzymatic and nonenzymatic antioxidant systems to prevent oxidative damage. A comparative analysis of honey bee with Drosophila melanogaster and Anopheles gambiae show that although the basic components of the antioxidant system are conserved, there are important species differences in the number of paralogs. These include the duplication of thioredoxin reductase and the expansion of the thioredoxin family in fly; lack of expansion of the Thetha, Delta and Omega Glutathione S-transferase classes in honey bee and the no expansion of the Sigma class in dipteran species. The increase in the number of Sigma class members in bees, seems to be involved with protection against oxidants produced by aerobic metabolism, rather than xenobiotics. In flies, members of this class are primarily located in the indirect flight muscles ${ }^{80}$ and have been reported to have an important role in the detoxification of lipid peroxidation products ${ }^{81}$. Honey bees take foraging trips that may last up to one hour and they carry heavy loads of nectar and pollen during this time ${ }^{82}$, so they likely produce a high level free radicals. Perhaps this aspect of their lifestyle exerted selection on these antioxidant genes.

SNPs and Population Genetics

Samples. Sampling is described in detail in Whitfield et al ${ }^{83}$. In total, 175 A. mellifera were collected from 14 different geographical subspecies from their native ranges in Africa, Europe and Asia. The 10 subspecies represented in the current study include A. m. mellifera ($\mathrm{N}=20$), A. m. iberiensis (11), A. m. ligustica (18), A. m. carnica (16), A. m. anatoliaca (18), A. m. caucasica (14), A. m. syriaca (9), A. m. scutellata (21), A. m. lamarckii (19) and A. m. intermissa (19). All individuals were workers (diploid females) collected from different colonies except for 6 of the A. m. scutellata (2 were collected from each of 3 colonies). Sampling of introduced New World bees is as described ${ }^{83}$.
SNP identification. SNPs were identified using the honey bee genome assembly 3.08 and 2483 shotgun genome traces from North American Africanized bees (genome-derived) or ESTs, including 71861 from mixed domestic bees from Illinois, USA (21,408 from a brain library ${ }^{84}$ and 50453 from a whole heads library (from Riken) and 4998 from African hybrid bees from Brazil ${ }^{85}$. ESTs were pre-clustered with assembly scaffolds using BLASTN ($\mathrm{e}<10^{-5}$). Genometraces and (pre-clustered) ESTs were aligned with assembly scaffolds and scanned for SNPs using POLYBAYES v. 3.0^{86}, which assigns a probability score (P) that each putative SNP is a true polymorphism rather than a sequencing error (default settings; quality scores were used; prior polymorphism rate $=0.003$). For genome-derived SNPs, assembly 3.08 was used as anchor and as template for sequence comparison, and SNPs were identified in both mapped and unmapped scaffolds. For EST-derived SNPs, assembly 3.08 was used as anchor only, and SNPs were identified only in scaffolds mapped to chromosomes. A subset of 1536 SNPs were selected for genotyping based on spacing criteria, SNP probability score (P), "designability" scores for genotyping oligonucleotides (provided by Illumina), and manual inspection of SNP flanking sequence aligned with genome traces (for removal of SNPs with immediately flanking SNPs or indels that might interfere with genotyping assay).

Genotyping and quality filtering. SNPs were typed with the Illumina BeadStation 500G using a custom Oligo Pool Assay (OPA) designed to detect the 1536 SNPs selected above ${ }^{73,87}$. SNP genotypes were generated for a total of 369 A. mellifera and 13 related species (A. cerana, A. dorsata and A. florea). A. mellifera samples included 16 drones (haploid males) used in SNP quality assessment but not analyzed in the current study. SNPs were removed from the data set for the following reasons: 194 (12.6\%) had good base calls in $<80 \%$ of A. mellifera samples; $191(12.4 \%)$ appeared to be monomorphic (based on 0 or 1 occurrence of minor allele in all samples); 4 erroneously duplicate SNPs; and 11 that were typed as "heterozygote" in any of the 16 drones (possibly reflecting paralogous rather than polymorphic target sequences). A. mellifera samples with $<80 \%$ SNP calls were removed from the data set (other Apis species were retained irrespective of base call rate). These quality criteria resulted in a final data set consisting of 1136 SNPs analyzed in 328 A. mellifera (with mean and minimum call rates of 98.4 and 88.0%, respectively) and 13 individuals from related species (with call rates of $48.6 \pm 0.5 \%, 46.2 \pm$ 0.2%, and $37.6 \pm 0.4 \%$ for A. cerana, A. dorsata and A. florea, respectively; mean $\pm \mathrm{SE}$).
Distance measures and phylogenetic analysis. Fst $_{\text {ST }}$ values were calculated using Weir and Cockerham's unbiased estimator ${ }^{88}$. Bootstrap and phylogentic analyses were performed using the PHYLIP software package ${ }^{89}$. Population distances were calculated using Nei's genetic distance ${ }^{90}$ implemented in the GENDIST function. Population distance tree was generated using the Neighbor-Joining algorithm ${ }^{91}$ implemented in the NEIGHBOR function.

References

1. Gibbs, R. A. et al. Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 428, 493-521 (2004).
2. Havlak, P. et al. The Atlas genome assembly system. Genome Res 14, 721-32 (2004).
3. Cai, W. W., Chen, R., Gibbs, R. A. \& Bradley, A. A clone-array pooled shotgun strategy for sequencing large genomes. Genome Res 11, 1619-23 (2001).
4. Richards, S. et al. Comparative genome sequencing of Drosophila pseudoobscura: chromosomal, gene, and cis-element evolution. Genome Res 15, 1-18 (2005).
5. Beye, M. \& Raeder, U. Rapid DNA preparation from bees and $\% \mathrm{GC}$ fractionation. Biotechniques 14, 372-4 (1993).
6. Solignac, M. et al. The genome of Apis mellifera: dialog between mapping and sequencing. Genome Biol Submitted (2006).
7. Wen, S. Y. \& Zhang, C. T. Identification of isochore boundaries in the human genome using the technique of wavelet multiresolution analysis. Biochem Biophys Res Commun 311, 215-22 (2003).
8. Zhang, C. T. \& Zhang, R. An isochore map of the human genome based on the Z curve method. Gene 317, 127-35 (2003).
9. Bernaola-Galvan, P., Roman-Roldan, R. \& Oliver, J. L. Compositional segmentation and long-range fractal correlations in DNA sequences. Physical Review. E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics 53, 5181-5189 (1996).
10. Cohen, N., Dagan, T., Stone, L. \& Graur, D. GC composition of the human genome: in search of isochores. Mol Biol Evol 22, 1260-72 (2005).
11. Consortium, H. B. G. S. Insights into social insects from the genome of the honey bee Apis mellifera. Nature In press (2006).
12. Robertson, H. M. \& MacLeod, E. G. Five major subfamilies of mariner transposable elements in insects, including the Mediterranean fruit fly, and related arthropods. Insect Mol Biol 2, 125-39 (1993).
13. Ebert, P. R., Hileman, J. P. t. \& Nguyen, H. T. Primary sequence, copy number, and distribution of mariner transposons in the honey bee. Insect Mol Biol 4, 69-78 (1995).
14. Lampe, D. J., Witherspoon, D. J., Soto-Adames, F. N. \& Robertson, H. M. Recent horizontal transfer of mellifera subfamily mariner transposons into insect lineages representing four different orders shows that selection acts only during horizontal transfer. Mol Biol Evol 20, 554-62 (2003).
15. Price, A. L., Jones, N. C. \& Pevzner, P. A. De novo identification of repeat families in large genomes. Bioinformatics 21 Suppl 1, i351-i358 (2005).
16. Barry, E. G., Witherspoon, D. J. \& Lampe, D. J. A bacterial genetic screen identifies functional coding sequences of the insect mariner transposable element Famar1 amplified from the genome of the earwig, Forficula auricularia. Genetics 166, 823-33 (2004).
17. Robertson, H. M. in Mobile DNA II (eds. Craig, N. L., Craigie, R., Gellert, M. \& Lambowitz, A. M.) (ASM Press, Washington, DC, 2002).
18. Robertson, H. M. \& Walden, K. K. Bmmar6, a second mori subfamily mariner transposon from the silkworm moth Bombyx mori. Insect Mol Biol 12, 167-71 (2003).
19. Avancini, R. M., Walden, K. K. \& Robertson, H. M. The genomes of most animals have multiple members of the Tcl family of transposable elements. Genetica 98, 131-40 (1996).
20. Arkhipova, I. R. \& Meselson, M. Diverse DNA transposons in rotifers of the class Bdelloidea. Proc Natl Acad Sci U S A 102, 11781-6 (2005).
21. Coy, M. R. \& Tu, Z. Gambol and Tcl are two distinct families of DD34E transposons: analysis of the Anopheles gambiae genome expands the diversity of the IS630-Tc1mariner superfamily. Insect Mol Biol 14, 537-46 (2005).
22. Sarkar, A. et al. Molecular evolutionary analysis of the widespread piggyBac transposon family and related "domesticated" sequences. Mol Genet Genomics 270, 173-80 (2003).
23. Kapitonov, V. V. \& Jurka, J. Molecular paleontology of transposable elements in the Drosophila melanogaster genome. Proc Natl Acad Sci U S A 100, 6569-74 (2003).
24. Kaspustin, Y., Souvorov, A. \& Tatusova, T. in RECOMB 2004741 (2004).
25. Kiryutin, B. \& Souvorov, A. in ISMB (2005).
26. Souvorov, A., Tatusova, T. \& Lipman, D. J. in ISMB 125 (2004).
27. Haas, B. J. et al. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res 31, 5654-66 (2003).
28. Curwen, V. et al. The Ensembl automatic gene annotation system. Genome Res 14, 94250 (2004).
29. Birney, E., Clamp, M. \& Durbin, R. GeneWise and Genomewise. Genome Res 14, 98895 (2004).
30. Altschul, S. F. \& Koonin, E. V. Iterated profile searches with PSI-BLAST--a tool for discovery in protein databases. Trends Biochem Sci 23, 444-7 (1998).
31. Bairoch, A. et al. The Universal Protein Resource (UniProt). Nucleic Acids Res 33, D154-9 (2005).
32. Salamov, A. A. \& Solovyev, V. V. Ab initio gene finding in Drosophila genomic DNA. Genome Res 10, 516-22 (2000).
33. Hillier, L. W. et al. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432, 695-716 (2004).
34. Zdobnov, E. M. et al. Comparative genome and proteome analysis of Anopheles gambiae and Drosophila melanogaster. Science 298, 149-59 (2002).
35. Solovyev, V. V. in Handbook of Statistical Genetics (ed. Balding, D. e. a.) 83-127 (John Wiley \& Sons, Ltd., 2001).
36. Elsik, C., Mackey, A. J., Reese, J., Milshina, N. \& Weinstock, G. M. Creating a honey bee consensus gene set. Genome Res Submitted (2006).
37. Slater, G. S. \& Birney, E. Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics 6, 31 (2005).
38. Pertea, G. et al. TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics 19, 651-2 (2003).
39. Pearson, W. R. \& Lipman, D. J. Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A 85, 2444-8 (1988).
40. Kaplan, N. \& Linial, M. ProtoBee: Hierarchical classification and annotation of the honey bee proteome. Genome Res In press. (2006).
41. Elsik, C. et al. Community annotation: procedures, protocols, and supporting tools. Genome Res In the press (2006).
42. Lewis, S. E. et al. Apollo: a sequence annotation editor. Genome Biol 3, RESEARCH0082 (2002).
43. Tran, T., Havlak, P. \& Miller, J. MicroRNA enrichment among short 'ultraconserved' sequences in insects. Nucleic Acids Res 34, e65 (2006).
44. Bentwich, I. et al. Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 37, 766-70 (2005).
45. Nuwaysir, E. F. et al. Gene expression analysis using oligonucleotide arrays produced by maskless photolithography. Genome Res 12, 1749-55 (2002).
46. Bertone, P. et al. Global identification of human transcribed sequences with genome tiling arrays. Science 306, 2242-6 (2004).
47. Stolc, V. et al. Identification of transcribed sequences in Arabidopsis thaliana by using high-resolution genome tiling arrays. Proc Natl Acad Sci U S A 102, 4453-8 (2005).
48. Panda, S., Hogenesch, J. B. \& Kay, S. A. Circadian rhythms from flies to human. Nature 417, 329-35 (2002).
49. Rubin, E. et al. Molecular and phylogenetic analyses reveal mammalian-like clockwork in the honey bee (Apis mellifera) and shed new light on the molecular evolution of the circadian clock. Genome Res In press (2006).
50. Sine, S. M. \& Engel, A. G. Recent advances in Cys-loop receptor structure and function. Nature 440, 448-55 (2006).
51. Jones, A. K., Raymond-Delpech, V., Thany, S. H., Gauthier, M. \& Sattelle, D. B. The nicotinic acetylcholine receptor gene family of the honeybee, Apis mellifera. Genome Res In press (2006).
52. Jones, A. K. \& Sattelle, D. B. The cys-loop ligand-gated ion channel superfamily of the honeybee, Apis mellifera. Invert Neurosci 6, 123-32 (2006).
53. Dacher, M., Lagarrigue, A. \& Gauthier, M. Antennal tactile learning in the honeybee: effect of nicotinic antagonists on memory dynamics. Neuroscience 130, 37-50 (2005).
54. Thany, S. H., Crozatier, M., Raymond-Delpech, V., Gauthier, M. \& Lenaers, G. Apisalpha2, Apisalpha7-1 and Apisalpha7-2: three new neuronal nicotinic acetylcholine receptor alpha-subunits in the honeybee brain. Gene 344, 125-32 (2005).
55. Lozano, V. C., Armengaud, C. \& Gauthier, M. Memory impairment induced by cholinergic antagonists injected into the mushroom bodies of the honeybee. J Comp Physiol [A] 187, 249-54 (2001).
56. Thany, S. H. \& Gauthier, M. Nicotine injected into the antennal lobes induces a rapid modulation of sucrose threshold and improves short-term memory in the honeybee Apis mellifera. Brain Res 1039, 216-9 (2005).
57. El Hassani, A. K., Dacher, M., Gauthier, M. \& Armengaud, C. Effects of sublethal doses of fipronil on the behavior of the honeybee (Apis mellifera). Pharmacol Biochem Behav 82, 30-9 (2005).
58. Decourtye, A. et al. Comparative sublethal toxicity of nine pesticides on olfactory learning performances of the honeybee Apis mellifera. Arch Environ Contam Toxicol 48, 242-50 (2005).
59. Buckingham, S. D., Biggin, P. C., Sattelle, B. M., Brown, L. A. \& Sattelle, D. B. Insect GABA receptors: splicing, editing, and targeting by antiparasitics and insecticides. Mol Pharmacol 68, 942-51 (2005).
60. Tomizawa, M. \& Casida, J. E. Neonicotinoid insecticide toxicology: mechanisms of selective action. Annu Rev Pharmacol Toxicol 45, 247-68 (2005).
61. Jones, A. K. \& Sattelle, D. B. Functional genomics of the nicotinic acetylcholine receptor gene family of the nematode, Caenorhabditis elegans. Bioessays 26, 39-49 (2004).
62. Clarke, N. D. \& Granek, J. A. Rank order metrics for quantifying the association of sequence features with gene regulation. Bioinformatics 19, 212-8 (2003).
63. Liu, X. S., Brutlag, D. L. \& Liu, J. S. An algorithm for finding protein-DNA binding sites with applications to chromatin-immunoprecipitation microarray experiments. Nat Biotechnol 20, 835-9 (2002).
64. Roth, F. P., Hughes, J. D., Estep, P. W. \& Church, G. M. Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation. Nat Biotechnol 16, 939-45 (1998).
65. Sinha, S., van Nimwegen, E. \& Siggia, E. D. A probabilistic method to detect regulatory modules. Bioinformatics 19 Suppl 1, i292-301 (2003).
66. Sinha, S., Schroeder, M. D., Unnerstall, U., Gaul, U. \& Siggia, E. D. Cross-species comparison significantly improves genome-wide prediction of cis-regulatory modules in Drosophila. BMC Bioinformatics 5, 129 (2004).
67. Peiren, N. et al. The protein composition of honeybee venom reconsidered by a proteomic approach. Biochim Biophys Acta 1752, 1-5 (2005).
68. Peiren, N., de Graaf, D. C., Evans, J. D. \& Jacobs, F. J. Genomic and transcriptional analysis of protein heterogeneity of the honeybee venom allergen Api m 6. Insect Mol Biol Submitted. (2006).
69. Gething, M. J. \& Sambrook, J. Protein folding in the cell. Nature 355, 33-45 (1992).
70. Parsell, D. A. \& Lindquist, S. The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet 27, 437-96 (1993).
71. Morimoto, R. I., Tissieres, A. \& Georgopoulos, C. (eds.) Heat shock proteins: structure, function and regulation (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1994).
72. Heinrich, B. The hot-blooded insects, strategies and mechanisms of thermoregulation (Springer, Berlin, 1993).
73. Fan, C. Y., Lee, S. \& Cyr, D. M. Mechanisms for regulation of Hsp70 function by Hsp40. Cell Stress Chaperones 8, 309-16 (2003).
74. Venter, J. C. et al. The sequence of the human genome. Science 291, 1304-51 (2001).
75. Kunieda, T. et al. Carbohydrate metabolism genes and pathways in insects: insights from the honey bee genome. Insect Mol Biol In press (2006).
76. Surholt, B. \& Newsholme, E. A. Maximum activities and properties of glucose 6phosphatase in muscles from vertebrates and invertebrates. Biochem J 198, 621-9 (1981).
77. Ohashi, K., Natori, S. \& Kubo, T. Expression of amylase and glucose oxidase in the hypopharyngeal gland with an age-dependent role change of the worker honeybee (Apis mellifera L.). Eur J Biochem 265, 127-33 (1999).
78. Grogan, D. E. \& Hunt, J. H. Pollen proteases: their potential role in insect digestion. Insect Biochem 9, 309-313 (1979).
79. Tokuda, G. et al. Metazoan cellulase genes from termites: intron/exon structures and sites of expression. Biochim Biophys Acta 1447, 146-59 (1999).
80. Franciosa, H. \& Berge, J. B. Glutathione S-transferases in housefly (Musca domestica): location of GST-1 and GST-2 families. Insect Biochem Mol Biol 25, 311-7 (1995).
81. Singh, S. P., Coronella, J. A., Benes, H., Cochrane, B. J. \& Zimniak, P. Catalytic function of Drosophila melanogaster glutathione S-transferase DmGSTS1-1 (GST-2) in conjugation of lipid peroxidation end products. Eur J Biochem 268, 2912-23 (2001).
82. Winston, M. L. The biology of the honey bee (Harvard University Press, Cambridge, 1987).
83. Whitfield, C. W. et al. Thrice out of Africa: ancient and modern expansions of the honey bee, Apis mellifera. Science In press (2006).
84. Whitfield, C. W. et al. Annotated expressed sequence tags and cDNA microarrays for studies of brain and behavior in the honey bee. Genome Res 12, 555-66 (2002).
85. Nunes, F. M. et al. The use of Open Reading frame ESTs (ORESTES) for analysis of the honey bee transcriptome. BMC Genomics 5, 84 (2004).
86. Marth, G. T. et al. A general approach to single-nucleotide polymorphism discovery. Nat Genet 23, 452-6 (1999).
87. Fan, J. B. et al. Highly parallel SNP genotyping. Cold Spring Harb Symp Quant Biol 68, 69-78 (2003).
88. Weir, B. S. \& Cocherham, C. C. Estimating f-statistics for the analysis of population structure. Evolution 38, 1358-1370 (1984).
89. Felsenstein, J. (Department of Genetics, University of Washington, Seattle, WA, 1993).
90. Nei, M. Genetic distance among populations. American Naturalist 106, 283-292 (1972).
91. Saitou, N. \& Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406-25 (1987).
92. Robertson, H. M. \& Gordon, K. H. J. Canonical TTAGG repeat telomeres and telomerase in the honey bee, Apis mellifera. Genome Res In press (2006).
93. Robertson, H. M. \& Wanner, K. The chemoreceptor superfamily in the honey bee Apis mellifera: expansion of the odorant, but not gustatory, receptor family. Genome Res In the press (2006).
94. Robertson, H. M., Warr, C. G. \& Carlson, J. R. Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster. Proc Natl Acad Sci U S A 100 Suppl 2, 14537-42 (2003).
95. Velarde, R. A., Sauer, C. D., KK, O. W., Fahrbach, S. E. \& Robertson, H. M. Pteropsin: A vertebrate-like non-visual opsin expressed in the honey bee brain. Insect Biochem Mol Biol 35, 1367-77 (2005).

Supplementary Table List

Table S1. Genome Assemblies

Table S2. Read Statistics of the honey bee genome assembly, v4.0.

Table S3. Scaffold, contig, and completeness statistics for assembly v4.
A. Scaffolds
B. Contigs
C. Completeness
D. Statistics of 27 BACs
E. Statistics of 187 BACs

Table S4. Honey bee chromosome structure.

Table S5: Nucleotide and dinucleotide composition of honey bee non-coding regions, and comparison with other genomes.

Table S6: Comparison of Gene Sets.

Table S7: MicroRNAs

Table S8. Ortholog coverage of different gene prediction approaches.

Table S9. 3-way overlap of best reciprocal hits between proteomes of fruit fly and mosquito with each pair of bee gene prediction sets shows discrepancies between sets.

Table S10: Comparative Ortholog Patterns.

Table S11. Comparative Intron Patterns.

Table S12: One to One to One Orthologs with Duplications in Honey Bee.

Table S13. Comparative Domains.

Table S14. Homeobox Genes.

Table S15. Candidate new bee venom components.

Table S16. Mean population differentiation (F_{ST}) for evolutionary lineages of Apis mellifera, based on 1136 SNPs.

Table S17. Access to the Genome Assemblies.

Table S1. Genome Assemblies.

Version	Date	Description
1.0	12/2003	The first version of the honey bee A. mellifera assembly.
1.1	1/2004	This release is an incremental change of the assembly. It assembled bin0 reads, used more markers, and corrected the problems in some files of the previous release. All of the BINO reads which clustered into groups of 2 or more reads were assembled and scaffolded with the previous assembly. About 100K BIN0 reads were added to the new assembly and about 30K are still in BINO. More markers (1050 in this version vs. 854 in Amel_1.0) were used for placing sequences on linkage groups. Inconsistencies in agp and sequence files and mapping problems were corrected. Linkage group numbers were remapped so that they are from 1 to 16.
1.2	7/2004	This release added reads from shotgun sequencing of purified AT rich regions of the genome to the previous WGS reads. Of 171 K high quality AT rich reads, 141 k were added to the assembly. Addition of these reads increased both the contig and scaffold length, and contributed 10 Mb to the final assembly. This release used the Solignac map, with 1300 markers, to anchor parts of the genome to chromosomes.
2.0	1/2005	This release added reads from shotgun sequencing of purified AT rich regions of the genome, Fosmid clones ends and BAC reads to the previous WGS reads. 480k AT rich reads, 470k BAC reads, and 40k Fosmid clone end reads were added to the assembly. Addition of these reads increased both contig and scaffold length, and contributed 17 Mb to the final assembly. This release used the Solignac map, with 1634 markers, to anchor parts of the genome to chromosomes.
3.0	3/2005	Moderately repetitive sequences were assembled separately and placed using mate pair information and merged with sequence contigs from the version 2.0 assembly into new combined contigs. Identified haplotype contigs were omitted from this assembly. Contaminated

		regions identified in the version 2.0 assembly were omitted from this assembly. This release used the Solignac map, with 1634 markers, to anchor parts of the genome to chromosomes.
4.0	$3 / 2006$	Moderately repetitive sequences were assembled separately and placed using mate pair information and merged with sequence contigs from the version 2.0 assembly into new combined contigs. Highly repeated sequences, low coverage sequences, and contigs with length less than 1 kb were omitted from this assembly and are available as separate data sets on the FTP site. Identified haplotype contigs were omitted from this assembly and will be accessioned and presented with sequence and quality files. This release used the Solignac map with 2013 markers, to anchor parts of the genome to chromosomes.

The Amel assemblies were produced by assembling whole genome shotgun reads with the Atlas genome assembly system at the Baylor College of Medicine Human Genome Sequencing Center. Several WGS libraries, with inserts of $2-4 \mathrm{~kb}, 4-6 \mathrm{~kb}$, and about 35 kb , were used to produce the data. About 2.7 million reads were assembled, representing about 1.8 Gb of sequence and about $7.5 x$ coverage of the (clonable) honey bee genome. The products of the Atlas assembler are a set of contigs (contiguous blocks of sequence) and scaffolds. Scaffolds include sequence contigs that can be ordered and oriented with respect to each other as well as isolated contigs that could not be linked (single contig scaffolds or singletons). Reads which did not overlap other sequences were not assembled and are found in the collection of reads called BINO.

Table S2. Read Statistics of the honey bee genome assembly, v4.0.

Read type	WGS	WGS	WGS	AT-rich ${ }^{1}$	BAC ${ }^{2}$	
Insert Size (kb)	2-4	4-6	35	1-2	1-2	Total
Source/Vector	Plasmid	Plasmid	Fosmid	Plasmid	Plasmid	
Reads (million)						
All	1.12	1.23	0.11	0.85		3.31
Trimmed ${ }^{3}$	0.95	1.01	0.08	0.73	0.47	3.23
Paired ends	0.90	0.95	0.06	0.55	0.21	2.67
Assembled	0.87	0.94	0.07	0.62	0.47	2.97
Unassembled, Bin0 ${ }^{4}$	0.02	0.02	0.002	0.009		0.04
Unassembled, highly repetitive reads ${ }^{5}$	0.06	0.05	0.007	0.09		0.21
Unassembled, other repetitive reads ${ }^{6}$	0.009	0.004	0.0004	0.016		0.03
Bases (million)						
Trimmed	589.8	624.7	50.9	510.3	280.3	2056
Assembled	544.0	589.3	45.5	432.2	280.3	1891
Unassembled, Bin0 ${ }^{4}$	6.3	6.0	0.9	4.2		17.4
Unassembled, highly repetitive reads ${ }^{5}$	34.2	26.9	4.3	62.6		128
Unassembled, other repetitive reads ${ }^{6}$	5.4	2.5	0.16	11.3		19.4
Sequence Coverage ${ }^{7}$	2.5x	2.6x	0.2x	2.2x		7.6x
Clone Coverage ${ }^{8}$	5.6x	10.4x	5.0x	2.1x		23.1x

${ }^{1}$ WGS reads prepared from AT-rich DNA isolated by density gradient centrifugation as described ${ }^{1}$.
${ }^{2}$ WGS reads prepared from pooled BAC DNA. The reads were treated en masse as if they were genomic WGS reads and not from individual BAC clones.
${ }^{3}$ Removal of low base quality or very short reads.
${ }^{4}$ During assembly reads that share sequence overlaps are placed into "bins." Reads that have no overlaps are placed in Bin0 - these are often reads with poor sequence quality or contaminants. They are not assembled since they do not overlap other reads. A small fraction of the Bin0 reads represent regions that are simply low coverage due to sampling statistics or difficulty in cloning, such as the AT-rich regions of the honey bee genome. Other reads that are not assembled are highly repeated sequences or sequences giving inconsistent placement.
${ }^{5}$ Highly repetitive reads are those containing high copy number repeated sequences that are not included in the assembly either by read pair information or as part of the stringent assembly of repeats into reptigs.
${ }^{6}$ Other repeats are those that are not high copy number but fail to assemble into reptigs or by read pair information.
${ }^{7}$ Sequence coverage was calculated as total trimmed bases divided by calculated genome size. Genome size was calculated as total contig length divided by the fraction of markers hit by all contigs(231M/99\%=233M).
${ }^{8}$ Clone coverage was calculated as sum of insert sizes for paired reads divided by the calculated genome size.

Table S3. Scaffold, contig, and completeness statistics for assembly v4.

A. Scaffolds

Scaffolds/Contigs	Number	N50(kb)	Bases+Gaps (Mb)	Bases(Mb)	Total Scaffold Length (\%)
 Oriented	320	621	152	150	64.7
Anchored Not Oriented	306	135	34	33	14.6
Unanchored Scaffolds	9,244	16	49	48	20.6
All Scaffolds	9,870	362	235	231	100
All Contigs	18,072	41	231	231	98.3

B. Contigs

	Mapped, Total	Mapped, oriented	Mapped, unoriented	Unmapped
Total Contig Number	6,596	5,136	1,460	11,476
Total Contig Length, Mb	183.3	149.6	33.7	47.7
Avg Contig Length, bp	27,793	29,133	23,078	4,157
N50 Contig Length, bp	52,503	54,923	41,860	9,001
\% A+T	65	64	70	76
No. Repeat Regions*	1,571	1,261	310	3,684
Total Length Repeat Regions, Mb	1.7	1.3	0.4	5.9
Repeats as \% of Total	0.9	0.9	1.1	12.4

* either as reptig (a contig formed by stringent assembly of repeats) or merged in contig (e.g. due to read pairing for placement).

C. Completeness

	Assembly(\%)	Bin0(\%)	Assembly+Bin0(\%)
Markers (2,013)	99	23	99
EST $(3,136)$	98	8	98
cDNA (57)	96	30	96

D. Completeness of 27 BACs

Clone name		reads attempted	$\begin{aligned} & \text { total Q20 } \\ & \text { bases } \end{aligned}$	cov for 165kb	Accession	cov of assembled contigs	$\begin{aligned} & \text { \# of } \\ & \text { ctgs } \end{aligned}$	\# of high quality ctgs	\# of bases in high quality ctgs	\# of bases covered in asm	base covered percentage
$\begin{aligned} & \text { CH224- } \\ & 57 \mathrm{G} 9 \end{aligned}$	AMFD	2280	1209724.6	7.331664242	AC141723	8.183435931	4	4	147526	146210	99\%
$\begin{aligned} & \text { CH224- } \\ & 59 \mathrm{E} 21 \end{aligned}$	AMEB	2280	1299532.5	7.875954545	AC141751	8.216101132	5	5	157769	153066	97\%
$\begin{aligned} & \hline \text { CH224- } \\ & 63 \mathrm{~A} 6 \end{aligned}$	AMDD	1520	886960.2	5.375516364	AC141775	8.475167695	7	7	104054	101538	98\%
$\begin{aligned} & \text { CH224- } \\ & 58 \mathrm{~F} 16 \end{aligned}$	AMEP	2280	1102015.2	6.67888	AC141737	6.836068136	8	6	158327	157088	99\%
$\begin{aligned} & \hline \text { CH224- } \\ & \text { 62B14 } \end{aligned}$	AMBB	2280	1255890.4	7.61145697	AC141822	7.033712119	9	9	177753	172041	97\%
$\begin{aligned} & \text { CH224- } \\ & \text { 60D20 } \end{aligned}$	AMDW	2280	1179258.1	7.147018788	AC141754	7.288774406	9	9	160991	154802	96\%
$\begin{aligned} & \hline \text { CH224- } \\ & 58 \mathrm{~F} 1 \end{aligned}$	AMEF	2280	1256070.6	7.612549091	AC141747	8.711822722	9	9	143380	136677	95\%
$\begin{aligned} & \text { CH224- } \\ & 56 \mathrm{H} 7 \end{aligned}$	AMFW	1710	945769.5	5.731936364	AC141706	5.391580586	10	10	174516	173059	99\%
$\begin{aligned} & \text { CH224- } \\ & 55 \mathrm{I} 1 \end{aligned}$	AMGK	2280	1217914	7.38129697	AC141692	7.753315126	10	10	156183	148594	95\%
$\begin{aligned} & \text { CH224- } \\ & 58 \mathrm{~F} 11 \end{aligned}$	AMEK	1710	965304	5.850327273	AC141740	6.386693396	10	10	150243	144583	96\%
$\begin{aligned} & \hline \text { CH224- } \\ & 58 \mathrm{~F} 15 \end{aligned}$	AMEO	2090	1098812	6.659466667	AC141736	6.594164456	11	11	165634	163711	99\%
$\begin{aligned} & \hline \text { CH224- } \\ & 58 \mathrm{~F} 3 \\ & \hline \end{aligned}$	AMEG	2280	1227715.5	7.4407	AC141744	7.193336419	12	12	169574	163230	96\%
$\begin{aligned} & \hline \text { CH224- } \\ & \text { 60D19 } \end{aligned}$	AMDV	2280	1205360.2	7.305213333	AC141757	7.093650579	12	10	166385	156892	94\%
$\begin{aligned} & \text { CH224- } \\ & 59 \mathrm{E} 23 \end{aligned}$	AMED	2184	1182490.4	7.166608485	AC141749	6.136909464	14	14	191385	184545	96\%
$\begin{aligned} & \hline \text { CH224- } \\ & 63 \mathrm{~A} 10 \end{aligned}$	AMDH	1520	877001	5.315157576	AC141771	4.965918099	14	14	175304	170326	97\%
$\begin{aligned} & \text { CH224- } \\ & \text { 60D5 } \end{aligned}$	AMCJ	1900	864328.5	5.238354545	AC141792	4.895908033	15	15	175141	170321	97\%
$\begin{aligned} & \hline \text { CH224- } \\ & 58 \mathrm{~F} 12 \\ & \hline \end{aligned}$	AMEL	1520	864309.6	5.23824	AC141741	5.086208601	15	15	168532	163355	97\%

$\begin{aligned} & \hline \text { CH224- } \\ & 61 \mathrm{C} 17 \end{aligned}$	AMBY	2090	1018145.6	6.170579394	AC141803	5.320465709	17	17	189764	180244	95\%
$\begin{aligned} & \hline \text { CH224- } \\ & 58 \mathrm{~F} 6 \end{aligned}$	AMEH	2090	1127941.5	6.836009091	AC141745	6.119075907	17	17	182732	167743	92\%
$\begin{aligned} & \hline \text { CH224- } \\ & 54 \mathrm{~J} 17 \end{aligned}$	AMHV	1520	864939.6	5.242058182	AC141662	4.753799733	17	17	180347	172356	96\%
$\begin{aligned} & \text { CH224- } \\ & 56 \mathrm{H} 8 \end{aligned}$	AMFX	2090	891854	5.405175758	AC141707	5.318849223	24	20	160820	142529	89\%
$\begin{aligned} & \text { CH224- } \\ & 61 \mathrm{C} 5 \end{aligned}$	AMBM	2280	1165036	7.060824242	AC141812	6.953819708	24	8	147252	144340	98\%
$\begin{aligned} & \hline \text { CH224- } \\ & 61 \mathrm{C} 10 \end{aligned}$	AMBR	2660	1478875.2	8.96288	AC141808	8.231567581	25	24	175827	149733	85\%
$\begin{aligned} & \text { CH224- } \\ & 62 \mathrm{~B} 10 \end{aligned}$	AMAX	1900	917461.6	5.560373333	AC141826	5.508460268	26	13	148154	143230	97\%
$\begin{aligned} & \hline \text { CH224- } \\ & 57 \mathrm{G} 4 \end{aligned}$	AMFA	6080	3915801	23.73212727	AC141724	30.75630906	45	45	122917	106793	87\%
$\begin{aligned} & \text { CH224- } \\ & \text { 60D3 } \end{aligned}$	AMCI	1615	982131	5.952309091	AC141795	4.954652313	50	50	193324	184996	96\%
$\begin{aligned} & \text { CH224- } \\ & \text { 60D7 } \end{aligned}$	AMDL	2470	1061479.9	6.433211515	AC141767	5.091226042	51	48	198566	159696	80\%

E. Statistics of 187 BACs

| HGSC
 project
 name | reads
 attempted | pass_qual | pass_screen | avg_P20 | total Q20
 bases | cov for
 165kb | Accession | Clone
 name | \#
 ctgs | \#
 bases | |
| :--- | ---: | ---: | ---: | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| AMBL | 2850 | 2436 | 2240 | 577 | 1292480 | 7.833212121 | ACov of
 assembled
 contigs | | | | |
| AMEU | 1900 | 1768 | 1587 | 621.2 | 985844.4 | 5.974814545 | AC141730 | CH224-
 61 C 4 | CH224-
 58 F 21 | 909619 | 3.155322385 |
| AMCG | 2470 | 2179 | 1981 | 638.6 | 1265066.6 | 7.667070303 | AC141797 | CH224-
 60 D 1 | 58 | 268255 | 4.715910607 |
| AMFD | 2280 | 2128 | 2026 | 597.1 | 1209724.6 | 7.331664242 | AC141723 | CH224-
 57 G 9 | 4 | 147826 | 8.183435931 |
| AMEB | 2280 | 2145 | 2007 | 647.5 | 1299532.5 | 7.875954545 | AC141751 | CH224-
 $59 E 21$ | 5 | 158169 | 8.216101132 |
| AMDD | 1520 | 1433 | 1338 | 662.9 | 886960.2 | 5.375516364 | AC141775 | CH224-
 $63 A 6$ | 7 | 104654 | 8.475167695 |

AMEP	2280	1783	1716	642.2	1102015.2	6.67888	AC141737	$\begin{aligned} & \hline \text { CH224- } \\ & 58 \mathrm{~F} 16 \end{aligned}$	8	161206	6.836068136
AMBB	2280	2112	2012	624.2	1255890.4	7.61145697	AC141822	$\begin{aligned} & \text { CH224- } \\ & \text { 62B14 } \end{aligned}$	9	178553	7.033712119
AMDW	2280	2127	1993	591.7	1179258.1	7.147018788	AC141754	$\begin{aligned} & \text { CH224- } \\ & \text { 60D20 } \end{aligned}$	9	161791	7.288774406
AMEF	2280	2129	2011	624.6	1256070.6	7.612549091	AC141747	$\begin{aligned} & \text { CH224- } \\ & 58 \mathrm{~F} 1 \end{aligned}$	9	144180	8.711822722
AMFW	1710	1646	1585	596.7	945769.5	5.731936364	AC141706	$\begin{aligned} & \hline \text { CH224- } \\ & 56 \mathrm{H} 7 \\ & \hline \end{aligned}$	10	175416	5.391580586
AMGK	2280	2061	1921	634	1217914	7.38129697	AC141692	$\begin{aligned} & \hline \text { CH224- } \\ & 55 \mathrm{I} 1 \end{aligned}$	10	157083	7.753315126
AMEK	1710	1519	1476	654	965304	5.850327273	AC141740	$\begin{aligned} & \hline \text { CH224- } \\ & 58 \mathrm{~F} 11 \end{aligned}$	10	151143	6.386693396
AMEO	2090	1957	1870	587.6	1098812	6.659466667	AC141736	$\begin{aligned} & \text { CH224- } \\ & 58 \mathrm{~F} 15 \end{aligned}$	11	166634	6.594164456
AMEG	2280	2142	2035	603.3	1227715.5	7.4407	AC141744	$\begin{aligned} & \hline \text { CH224- } \\ & 58 \mathrm{~F} 3 \end{aligned}$	12	170674	7.193336419
AMDV	2280	2049	1903	633.4	1205360.2	7.305213333	AC141757	$\begin{aligned} & \hline \text { CH224- } \\ & \text { 60D19 } \end{aligned}$	12	169921	7.093650579
AMED	2184	2039	1924	614.6	1182490.4	7.166608485	AC141749	$\begin{aligned} & \hline \text { CH224- } \\ & 59 \mathrm{E} 23 \end{aligned}$	14	192685	6.136909464
AMDH	1520	1459	1405	624.2	877001	5.315157576	AC141771	$\begin{aligned} & \text { CH224- } \\ & 63 \mathrm{~A} 10 \end{aligned}$	14	176604	4.965918099
AMCJ	1900	1528	1449	596.5	864328.5	5.238354545	AC141792	$\begin{aligned} & \hline \text { CH224- } \\ & \text { 60D5 } \end{aligned}$	15	176541	4.895908033
AMEL	1520	1445	1386	623.6	864309.6	5.23824	AC141741	$\begin{aligned} & \text { CH224- } \\ & 58 \mathrm{~F} 12 \end{aligned}$	15	169932	5.086208601
AMBY	2090	1905	1679	606.4	1018145.6	6.170579394	AC141803	$\begin{aligned} & \hline \text { CH224- } \\ & 61 \mathrm{C} 17 \end{aligned}$	17	191364	5.320465709
AMEH	2090	2002	1869	603.5	1127941.5	6.836009091	AC141745	$\begin{aligned} & \hline \text { CH224- } \\ & 58 \mathrm{~F} 6 \end{aligned}$	17	184332	6.119075907
AMHV	1520	1436	1346	642.6	864939.6	5.242058182	AC141662	$\begin{aligned} & \hline \text { CH224- } \\ & 54 \mathrm{~J} 17 \\ & \hline \end{aligned}$	17	181947	4.753799733
AMFX	2090	1746	1543	578	891854	5.405175758	AC141707	$\begin{aligned} & \hline \text { CH224- } \\ & 56 \mathrm{H} 8 \\ & \hline \end{aligned}$	24	167678	5.318849223
AMBM	2280	2030	1880	619.7	1165036	7.060824242	AC141812	$\begin{aligned} & \text { CH224- } \\ & 61 \mathrm{C} 5 \end{aligned}$	24	167539	6.953819708
AMBR	2660	2518	2271	651.2	1478875.2	8.96288	AC141808	$\begin{aligned} & \text { CH224- } \\ & 61 \mathrm{C} 10 \end{aligned}$	25	179659	8.231567581

AMAX	1900	1580	1522	602.8	917461.6	5.560373333	AC141826	$\begin{aligned} & \hline \text { CH224- } \\ & \text { 62B10 } \end{aligned}$	26	166555	5.508460268
AMFA	6080	5598	5598	699.5	3915801	23.73212727	AC141724	$\begin{aligned} & \text { CH224- } \\ & 57 \mathrm{G} 4 \end{aligned}$	45	127317	30.75630906
AMCI	1615	1486	1329	739	982131	5.952309091	AC141795	$\begin{aligned} & \text { CH224- } \\ & \text { 60D3 } \end{aligned}$	50	198224	4.954652313
AMDL	2470	2090	1703	623.3	1061479.9	6.433211515	AC141767	$\begin{aligned} & \text { CH224- } \\ & \text { 60D7 } \end{aligned}$	51	208492	5.091226042
AMHX	1520	1415	1329	642.1	853350.9	5.171823636					
AMCH	1615	1486	1341	634.7	851132.7	5.15838					
AMEY	1520	1471	1293	649.3	839544.9	5.088150909					
AMDM	1520	1411	1316	637.4	838818.4	5.083747879					
AMFU	1520	1425	1331	628.2	836134.2	5.06748					
AMBD	1520	1432	1284	648.2	832288.8	5.044174545					
AMDY	1520	1446	1324	627.8	831207.2	5.037619394					
AMDO	1520	1388	1348	614.9	828885.2	5.023546667					
AMDX	1520	1414	1343	613.2	823527.6	4.991076364					
AMAI	1520	1424	1328	616.7	818977.6	4.963500606					
AMEC	1900	1673	1299	628.6	816551.4	4.948796364					
AMCX	1520	1404	1365	589.1	804121.5	4.873463636					
AMBJ	1520	1428	1233	649.6	800956.8	4.854283636					
AMDJ	1520	1403	1271	629.3	799840.3	4.84751697					
AMGI	1330	1235	1179	667.8	787336.2	4.771734545					
AMDZ	1520	1462	1130	696.4	786932	4.769284848					
AMBH	1520	1342	1296	606	785376	4.759854545					
AMCO	1520	1402	1263	620.9	784196.7	4.752707273					
AMHN	1520	1437	1306	599.6	783077.6	4.745924848					
AMFP	1520	1387	1294	601.7	778599.8	4.718786667					
AMDT	1520	1370	1186	653.2	774695.2	4.695122424					
AMEJ	1520	1394	1339	576.1	771397.9	4.675138788					
AMAL	1616	1377	1332	570	759240	4.601454545					
AMCB	1520	1304	1150	657.2	755780	4.580484848					
AMDP	1330	1241	1183	638.6	755463.8	4.578568485					
AMDQ	1710	1284	1218	618.9	753820.2	4.568607273					
AMHS	1520	1351	1270	589.1	748157	4.534284848					
AMCL	1330	1226	1168	636.8	743782.4	4.507772121					
AMEE	1520	1334	1285	576.4	740674	4.488933333					

AMFM	1330	1235	1159	637.6	738978.4	4.47865697					
AMFV	1520	1382	1262	579.5	731329	4.43229697					
AMGA	1330	1267	1130	644.8	728624	4.41590303					
AMBU	1520	1347	1228	592.6	727712.8	4.410380606					
AMDK	1520	1420	1244	578.8	720027.2	4.363801212					
AMDG	1520	1438	1215	572.8	695952	4.217890909					
AMBS	1520	1290	1192	580	691360	4.190060606					
AMEW	1330	1252	1143	604	690372	4.184072727					
AMCK	1330	1224	1107	618.9	685122.3	4.152256364					
AMHE	1140	1092	1061	642.4	681586.4	4.130826667					
AMET	1234	1090	1010	673.4	680134	4.122024242					
AMCW	1330	1239	1125	602.9	678262.5	4.110681818					
AMEA	1804	1285	1232	550.3	677969.6	4.108906667					
AMEX	1330	1120	1027	643.3	660669.1	4.004055152					
AMCY	1140	1078	980	657.9	644742	3.907527273					
AMGJ	1330	1186	1008	631.9	636955.2	3.860334545					
AMCS	1140	1076	995	639.6	636402	3.856981818					
AMAE	1520	1120	1065	594	632610	3.834					
AMFO	1520	1246	1125	561.8	632025	3.830454545					
AMDB	1140	1073	1033	609	629097	3.812709091					
AMFT	1140	1057	970	647.9	628463	3.808866667					
AMCA	1424	1129	972	644.6	626551.2	3.79728					
AMAG	1140	1048	1006	619	622714	3.774024242					
AMDU	1140	1020	985	625.8	616413	3.735836364					
AMBK	1520	1225	1127	545.3	614553.1	3.724564242					
AMEV	1330	1155	1079	567.4	612224.6	3.710452121					
AMGE	1330	1155	1063	572.6	608673.8	3.688932121					
AMAY	1330	1094	960	602.9	578784	3.507781818					
AMEN	1140	1033	986	578.7	570598.2	3.458170909					
AMGF	1140	1036	997	557.5	555827.5	3.368651515					
AMFY	1140	1051	937	592.4	555078.8	3.364113939					
AMHU	950	889	846	647.4	547700.4	3.319396364					
AMEZ	1140	1001	932	585.2	545406.4	3.305493333					
AMBO	1140	1008	931	583.5	543238.5	3.292354545					
AMCT	950	847	816	646.9	527870.4	3.199214545					
AMFH	1330	1139	985	531.4	523429	3.17229697					

AMCR	1520	1084	1059	470.2	497941.8	3.017829091					
AMFB	760	743	706	675.9	477185.4	2.892032727					
AMAM	760	735	698	678.9	473872.2	2.871952727					
AMAQ	950	847	779	592.9	461869.1	2.799206667					
AMHG	1046	850	757	603.8	457076.6	2.770161212					
AMHO	760	700	669	672.3	449768.7	2.725870909					
AMFF	2090	1086	1003	446.8	448140.4	2.716002424					
AMHB	760	739	707	616.9	436148.3	2.64332303					
AMHQ	760	737	710	613.7	435727	2.640769697					
AMGU	760	710	688	628.7	432545.6	2.621488485					
AMAT	760	688	634	677	429218	2.601321212					
AMCN	760	678	643	667.5	429202.5	2.601227273					
AMGC	950	808	776	552.6	428817.6	2.598894545					
AMGP	760	714	684	625.5	427842	2.592981818					
AMES	760	725	658	648.3	426581.4	2.585341818					
AMAF	760	699	664	637.7	423432.8	2.566259394					
AMGW	760	716	690	601.6	415104	2.515781818					
AMHW	760	703	672	616.5	414288	2.510836364					
AMBW	1520	839	760	544.4	413744	2.507539394					
AMCQ	760	701	647	633.2	409680.4	2.482911515					
AMAR	760	706	673	608.1	409251.3	2.480310909					
AMHL	760	733	625	653.3	408312.5	2.474621212					
AMGR	760	699	646	630.9	407561.4	2.470069091					
AMFS	760	702	657	619.9	407274.3	2.468329091					
AMAN	760	726	671	606.3	406827.3	2.46562					
AMGY	760	709	670	607	406690	2.464787879					
AMDS	760	705	591	687.7	406430.7	2.463216364					
AMFI	760	711	679	597.9	405974.1	2.460449091					
AMIB	760	721	687	587.2	403406.4	2.444887273					
AMCM	760	694	640	627.7	401728	2.434715152					
AMBA	1140	743	698	572.3	399465.4	2.421002424					
AMGM	760	669	630	631.9	398097	2.412709091					
AMGZ	760	719	644	616.7	397154.8	2.406998788					
AMEI	760	708	654	605.8	396193.2	2.401170909					
AMIA	760	702	645	613.7	395836.5	2.399009091					
AMHR	760	712	644	614.2	395544.8	2.397241212					

AMHA	760	704	652	600.7	391656.4	2.373675152					
AMGB	760	728	666	585.8	390142.8	2.364501818					
AMGT	760	704	625	622.7	389187.5	2.358712121					
AMCZ	760	670	652	592.4	386244.8	2.340877576					
AMGX	760	683	623	605.9	377475.7	2.287731515					
AMAZ	760	723	680	553.9	376652	2.282739394					
AMBT	760	670	610	613.8	374418	2.2692					
AMDN	760	707	592	627.5	371480	2.251393939					
AMGD	570	558	531	699.3	371328.3	2.250474545					
AMHI	760	671	633	583.1	369102.3	2.236983636					
AMCU	1140	642	595	614.8	365806	2.217006061					
AMAH	760	661	614	580.7	356549.8	2.160907879					
AMEQ	760	673	612	579	354348	2.147563636					
AMAS	760	687	616	572.6	352721.6	2.137706667					
AMDE	760	704	656	535.2	351091.2	2.127825455					
AMHH	760	667	624	561	350064	2.1216					
AMFG	760	675	554	621.2	344144.8	2.085726061					
AMCP	570	534	506	678.3	343219.8	2.08012					
AMFK	760	642	604	564.3	340837.2	2.06568					
AMCF	760	664	613	555.7	340644.1	2.064509697					
AMAV	760	642	551	617.5	340242.5	2.062075758					
AMHP	570	549	505	662.5	334562.5	2.027651515					
AMGO	570	548	507	654.6	331882.2	2.011407273					
AMFQ	570	536	499	657.8	328242.2	1.989346667					
AMFA	760	638	571	572.9	327125.9	1.982581212					
AMEM	570	526	512	612.3	313497.6	1.899985455					
AMCV	1520	704	656	475	311600	1.888484848					
AMHD	570	522	472	653.8	308593.6	1.870264242					
AMCE	570	554	477	643.2	306806.4	1.859432727					
AMBE	570	527	498	614.3	305921.4	1.854069091					
AMGH	760	644	584	523.3	305607.2	1.852164848					
AMAB	760	650	589	518.6	305455.4	1.851244848					
AMBF	760	628	572	529.2	302702.4	1.83456					
AMGS	570	516	483	605.3	292359.9	1.771878182					
AMBN	570	536	514	562.7	289227.8	1.752895758					
AMBX	760	552	534	541.3	289054.2	1.751843636					

AMBG	570	513	453	632.5	286522.5	1.7365					
AMHJ	760	657	619	457.7	283316.3	1.717068485					
AMAW	760	613	492	568.7	279800.4	1.69576					
AMFZ	760	619	585	466	272610	1.652181818					
AMDR	760	595	539	501.7	270416.3	1.638886667					
AMAU	760	505	453	541.1	245118.3	1.485565455					
AMDA	380	368	348	693.5	241338	1.462654545					
AMFN	380	369	343	682.3	234028.9	1.41835697					
AMAJ	380	359	340	646.2	219708	1.331563636					
AMHC	380	357	318	686.1	218179.8	1.322301818					
AMBI	380	356	326	662	215812	1.307951515					
AMHM	380	349	329	643.8	211810.2	1.283698182					
AMDF	380	361	336	626.6	210537.6	1.275985455					
AMFC	380	361	330	636.5	210045	1.273					
AMDI	760	466	392	486.1	190551.2	1.154855758					
AMCD	760	270	239	563.2	134604.8	0.815786667					
AMBV	760	308	298	417.7	124474.6	0.754391515					
AMAO	190	184	171	635.4	108653.4	0.658505455					
AMER	190	179	165	610.1	100666.5	0.6101					
AMGG	380	265	253	396.7	100365.1	0.608273333					

Table S4. A. Honey bee chromosome structure.

Chromosome	Length $(\mu \mathrm{m})$	Arm Ratio	Paracentromeric AT-Rich Band Ratio (\%)	Type $^{\text {b }}$
1	3.48	1.16	18.85	Metacentric
2	2.49	3.18	29.36	Subtelocentric
3	2.28	4.61	27.46	Subtelocentric
4	2.06	2.77	34.30	Subtelocentric
5	1.16	4.12	30.22	Subtelocentric
6	1.91	3.78	33.06	Submetacentric
7	1.74	2.87	32.19	Subtelocentric
8	1.60	1.99	47.39	Subtelocentric
9	1.58	2.64	36.32	Subtelocentric
10	1.59	2.32	44.85	Submetacentric
11	1.44	2.22	43.09	Submetacentric
12	1.33	1.88	52.20	Submetacentric
13	1.16	1.92	60.00	Submetacentric
14	30.09	2.41	35.84	
15	Total	16		44.33

${ }^{\text {a }}$ Proportion of total chromosome length in DAPI bright (heterochromatic, dense DNA and/or higher AT content) bands on both sides of the centromere.
${ }^{\mathrm{b}}$ Classification based on Levan indexes ${ }^{2}$.

The stages examined to produce the different designations are described in a companion paper. Only the indexes values for the chromosomes $3,5,7$ and 9 are close to the telocentric range values.

B. Mapped BAC clones.

Locus \#	Accession \#	Clones	NCBI linkage group	Map position in the current NCBI http://www.ncbi.nlm.nih.gov/mapview/	
				Position using Locus \#	Position using Acces \#
Ac005	AJ509634	1F2	1	0.8676	$\begin{aligned} & 0.757 \text { and } \\ & 0.86765 \\ & \hline \end{aligned}$
Ac012	AJ509638	1C6	2	0.5714	0.4167
Ac032	AJ509641	2E1	6	0.5428	$\begin{array}{\|l\|} \hline 0.5428 \text { and } \\ 0.8285 \end{array}$
Ac045	AJ509644	2D6	6	0.6857	0.657
Ac140	AJ509682	5E2	15	0.5	0.5
Ac179	AJ509698	6B9	11	0.8387	0.80645
Ac184	AJ509700	6G8	3	0.5758	0.6061
Ac191	AJ509701	6D11	1	0.86765	0.8971
Ac194	AJ509703	6H12	1	0.2058	0.2058
Ac216	AJ509711	8H7	10	0.3333	0.4074
Ac303	AJ509719	49H2	(1)	No Match	No Match
Ag005a	AJ509722	56F6	1	0.3971	0.4117
Av006	AJ509738	6H3	5	0.625	0.59375
ANTP	AJ276511	22F1	16	0.0 .4187	0.4187

The designations of BACs that were located to chromosomal position, genetic map position and physical sequence. The BACs located to a chromosomal position by FISH are from M. Solignac (personal communication). Each BAC contains a locus from the Solignac genetic map as given. The accession number identifies the physical sequence of the BAC and its mapped locus.

Table S5: Nucleotide and dinucleotide composition of honey bee non-coding regions, and comparison with other genomes.

Species	Apis mellifera	Anopheles gambiae	Drosophila melanogaster	Caenorhabditis elegans	Arabidopsis thaliana	Tetraodon nigroviridis	Gallus gallus	Mus musculus
Total amount of DNA analyzed (Mb):								
Intergenic	11.0	143.8	99.7	50.3	95.9	97.3	370.4	1,341.2
Introns	32.3	47.5	52.3	28.4	23.2	65.3	574.7	945.7
G+C content:								
	(a) 31.60%	43.70\%	40.30\%	35.00\%	32.50\%	44.60\%	41.40\%	42.10\%
	(b) 31.50%	42.50\%	39.70\%	33.60\%	32.50\%	44.50\%	40.80\%	42.50\%
Dinucleotide occurrence (observed/expected):								
ApA	(a) 1.16	1.23	1.23	1.31	1.14	1.18	1.13	1.08
	(b) 1.17	1.22	1.23	1.35	1.17	1.20	1.15	1.08
ApC	(a) 0.80	0.96	0.86	0.83	0.93	0.93	0.85	0.87
	(b) 0.78	0.97	0.86	0.81	0.96	0.93	0.85	0.88
ApG	(a) 0.80	0.85	0.87	0.93	0.98	1.06	1.19	1.21
	(b) 0.81	0.85	0.88	0.90	0.97	1.08	1.20	1.24
ApT	(a) 1.03	0.92	0.95	0.83	0.90	0.83	0.84	0.86
	(b) 1.02	0.92	0.95	0.81	0.90	0.82	0.83	0.85
CpA	(a) 0.86	1.12	1.12	1.05	1.08	1.23	1.27	1.23
	(b) 0.85	1.12	1.12	1.00	1.10	1.23	1.27	1.24
CpC	(a) 1.07	0.98	1.07	1.10	1.08	1.04	1.10	1.21
	(b) 1.07	0.99	1.08	1.14	0.94	1.05	1.11	1.21
CpG	(a) 1.67	1.06	0.94	0.96	0.78	0.60	0.25	0.19
	(b) 1.68	1.04	0.92	0.99	0.56	0.58	0.23	0.19
CpT	(a) 0.79	0.85	0.87	0.92	0.99	1.06	1.20	1.21
	(b) 0.80	0.85	0.88	0.89	1.08	1.06	1.22	1.21
GpA	(a) 1.15	0.94	0.88	1.13	1.07	0.98	0.98	1.03

	(b) 1.18	0.94	0.89	1.10	1.12	0.99	0.99	1.02
GpC	(a) 1.07	1.15	1.32	0.97	0.90	1.08	1.13	0.93
	(b) 1.05	1.13	1.30	1.05	0.95	1.07	1.15	0.95
GpG	(a) 1.06	0.97	1.06	1.09	1.08	1.03	1.09	1.20
	(b) 1.07	0.97	1.05	1.12	0.96	1.00	1.04	1.17
GpT	(a) 0.79	0.97	0.86	0.84	0.94	0.93	0.86	0.88
	(b) 0.78	0.98	0.88	0.82	0.96	0.96	0.89	0.90
TpA	(a) 0.84	0.72	0.76	0.61	0.78	0.66	0.70	0.74
	(b) 0.82	0.74	0.77	0.60	0.76	0.65	0.71	0.75
TpC	(a) 1.14	0.94	0.88	1.12	1.08	0.97	0.98	1.02
	(b) 1.17	0.94	0.89	1.09	1.07	0.97	0.97	1.00
TpG	(a) 0.86	1.13	1.13	1.04	1.09	1.23	1.27	1.23
	(b) 0.85	1.13	1.13	1.02	1.21	1.24	1.27	1.23
TpT	(a) 1.16	1.23	1.23	1.29	1.13	1.18	1.11	1.07
	(b) 1.17	1.20	1.21		1.33	1.15	1.09	1.06

(a) Intergenic DNA; (b) Introns

Table S6: Comparison of Gene Sets.

Predicted Gene Set	No. Genes	No. Perfect Alignments / weighted by no. gene models	No. Present / weighted by no. gene models
GLEAN	10,157	$111 / .011$	$356 / .035$
Fgenesh	32,664	$100 / .003$	$385 / .012$
Fgenesh++	19,201	$97 / .005$	$350 / .018$
NCBI	9,759	$88 / .009$	$340 / .035$
Evolutionary Conserved Core	10,966	$39 / .004$	$284 / .026$
Ensembl	$27,755^{*}$	$32 / .0012$	$217 / .008$
Drosophila Orthologs	$8,878^{*}$	$4 / .0005$	$116 / .013$

*includes splice variants

Table S7: MicroRNAs

Identifier, contig location	Sequence
>ame-miR-9b MIMAT0001492	GCTTTGGTAATCTAGCTTTATGA
>ame-miR-12 MIMAT0001472	TGAGTATTACATCAGGTACTGGT
>ame-miR-124 MIMAT0001473	TAAGGCACGCGGTGAATGCCAAG
>ame-miR-125 MIMAT0001474	CCCCTGAGACCCTAACTTGTGA
>ame-miR-133 MIMAT0001475	TTGGTCCCCTTCAACCAGCTGT
>ame-miR-184 MIMAT0001476	TGGACGGAGAACTGATAAGGGC
>ame-miR-210 MIMAT0001477	TTGTGCGTGTGACAGCGGCTA
>ame-miR-219 MIMAT0001478	TGATTGTCCAAACGCAATTCTTG
>ame-miR-263 MIMAT0001479	GTAAATGGCACTGGAAGAATTCAC
>ame-miR-276 MIMAT0001480	TAGGAACTTCATACCGTGCTCT
>ame-miR-277 MIMAT0001481	TAAATGCACTATCTGGTACGACA
>ame-miR-278 MIMAT0001482	TCGGTGGGACTTTCGTCCGTTT
>ame-miR-281 MIMAT0001483	TGTCATGGAGTTGCTCTCTTTGT
>ame-miR-282 MIMAT0001484	GATTTAGCCTCTCCTAGGCTTTGTCTGT
>ame-miR-305 MIMAT0001486	ATTGTACTTCATCAGGTGCTCTG
>ame-miR-315 MIMAT0001487	TTTTGATTGTTGCTCAGAAAGC
>ame-miR-317 MIMAT0001488	TGAACACAGCTGGTGGTATCTCAGT
>1:3-27:Contig5303:28849:28875:+	AACTACGTGTATTCTCAAGCAATAACA
>2:3-26:Contig5152:16524:16549:-	AACAACCAAGAATATCAAACATATCT

>3:275-22:Contig5152:16564:16585:+	CCAGGAATCAAACATATTATTA
>4:16-23:Contig5560:7389:7411:-	AAATTGACTCTAGTAGGGAGTCC
>5:15-24:Contig3345:18299:18322:-	GGTAAAGCGTAGGAATTCTAAAAC
>6:230-22:Contig689:10381:10402:+	CTGCAATGCACTACGGAATTGA
>7:5-28:Contig5581:22777:22804:+	AGTTTTCAACTAGCAATAATCGCACCTC
>8:3-23:Contig4904:1877:1899:+	ACCACGCACAAGAGCCTGCAGCA
>9:13-23:Contig2989:21112:21134:+	GCGGCCAGGTTGGCGGTGTACGA
>10:49-23:Contig2370:12765:12787:+	TGGGGTTGCTTCGACGAGTTCAA
>11:83-23:Contig5267:19004:19026:+	AAGCACAAGGAGTCGAAGCACCT
>12:4-29:Contig6617:8346:8374:+	GCCGTCACCCAGTCCTGCAGCACCGGCGA
>13:2-27:Contig4870:17222:17248:-	GACAACGTTGGCTTCAACGTGAAGAAC
>14:2-25:Contig1504:192:216:-	AGGGATTCGGTTTTGTAACATTCGC
>15:4-25:Contig2364:7116:7140:-	AGCCCAAGATCCAAGTCGCCTCCAA
>16:5-24:Contig7280:17004:17027:-	GCTCTACCACTGAGCTATATCCCC
>17:24-24:Contig5599:11767:11790:-	CAGGTGAAGATCTGGTTCCAGAAC
>18:84-23:Contig2187:462:484:+	ATCTCGTTGGCGCACTCGATGCA
>19:111-22:Contig2327:9616:9637:+	GTGATGATCATCTCGGTGCCGA
>20:125-22:Contig4109:28566:28587:+	ACATGTACTCCTGCACGATGTA
>21:212-22:Contig5564:13893:13914:+	AGTGCGACTGCGGCTGGGAGGA
>22:267-22:Contig461:87433:87454:-	AGGTTGAAGATGGTGTAGATGA
>23:37-21:Contig4131:17187:17207:+	CCTTGCAGCCCTCGCAGGTGA

$>24: 174-21:$ Contig4222:29953:29973:+	CTGGCTGTGGAAGCTGGCGAA
$>25: 605-21:$ Contig2856:13986:14006:-	ACGATCAGGATCTCCTGCAGG
$>H C _m i r-283 _m a t u r e$ Amel2.0	AAATATCAGCTGGTAATTCT

Table S8. Ortholog coverage of different gene prediction approaches.

A) The following sets were compared:

Acronym	Proteins	Source
FGAB	32,664	Fgenesh softberry (ab initio)
ENSM	27,755	EnsEMBL EBI
HSAP	22,218	Homo_sapiens.NCBI35.LONGESTpep
FGPL	19,201	Fgenesh++ softberry
AGAM	13,364	Anopheles_gambiae.MOZ2a.LONGESTpep
DMEL	10,966	Homology core (E. Zdobnov)
EZs1	10,044	GLEAN predictions version 2
GLN2	9,759	NCBI
NCBI	8,878	M. Eisen
MEIS		

B) Counts of the number of best reciprocal hits in Smith-Waterman protein comparisons between each of the sets and proteomes of fruit fly, mosquito and human.

D.melanogaster		A. gambiae		H. sapiens	
AGAM	7,390	-	-	AGAM	5,585
-	-	DMEL	7,390	DMEL	5,681
ENSM	5,904	ENSM	5,954	ENSM	5,270
EZs1	6,566	EZs1	6,608	EZs1	5,630
FGAB	6,762	FGAB	6,855	FGAB	5,963
FGPL	5,940	FGPL	5,924	FGPL	5,254
GLN2	6,698	GLN2	6,580	GLN2	5,848
HSAP	5,681	HSAP	5,585	-	-
MEIS	5,551	MEIS	5,074	MEIS	4,383

NCBI	6,275	NCBI	6,220	NCBI	5,539

Table S9. 3-way overlap of best reciprocal hits between proteomes of fruit fly and mosquito with each pair of bee gene prediction sets shows discrepancies between sets.

The diagonal cells show the number of best reciprocal hits as in Table S6 and, for example, even though the number of best reciprocal hits between FGAB and GLN2 sets and D. melanogaster proteome are similar (6762 and 6698 respectively) they agree on only 6308 genes etc.
A) D. melanogaster

	AGAM	FGAB	GLN2	EZs $\mathbf{1}$	NCBI	FGPL	ENSM	HSAP	MEIS
AGAM	7,390	6,029	5,999	5,901	5,661	5,338	5,311	5,140	4,942
FGAB	6,029	6,762	6,308	6,142	5,930	5,658	5,479	5,098	5,089
GLN2	5,999	6,308	6,698	6,213	6,143	5,692	5,542	5,080	5,136
EZs1	5,901	6,142	6,213	6,566	5,836	5,606	5,442	5,016	5,039
NCBI	5,661	5,930	6,143	5,836	6,275	5,366	5,257	4,804	4,760
FGPL	5,338	5,658	5,692	5,606	5,366	5,940	4,924	4,522	4,478
ENSM	5,311	5,479	5,542	5,442	5,257	4,924	5,904	4,531	4,425
HSAP	5,140	5,098	5,080	5,016	4,804	4,522	4,531	5,681	4,170
MEIS	4,942	5,089	5,136	5,039	4,760	4,478	4,425	4,170	5,551

B) A. gambiae

	DMEL	FGAB	EZs1	GLN2	NCBI	ENSM	FGPL	HSAP	MEIS
DMEL	7,390	6,019	5,864	5,974	5,644	5,277	5,304	5,118	4,880

FGAB	6,019	6,855	6,125	6,226	5,895	5,455	5,616	5,011	4,738
EZs1	5,864	6,125	6,608	6,128	5,778	5,390	5,524	4,918	4,688
GLN2	5,974	6,226	6,128	6,580	6,063	5,457	5,591	4,971	4,776
NCBI	5,644	5,895	5,778	6,063	6,220	5,198	5,294	4,708	4,449
ENSM	5,277	5,455	5,390	5,457	5,198	5,954	4,872	4,402	4,165
FGPL	5,304	5,616	5,524	5,591	5,294	4,872	5,924	4,419	4,180
HSAP	5,118	5,011	4,918	4,971	4,708	4,402	4,419	5,585	3,922
MEIS	4,880	4,738	4,688	4,776	4,449	4,165	4,180	3,922	5,074

Table S10: Comparative Ortholog Patterns.

Patterns of orthologous genes distribution among the three insect and three vertebrate species considered. For each pattern the number of such ortholous groups (OGs) and the total number of genes in each of the organisms classified into these groups are shown. ' N ' denotes more than one gene member in each of the orthologous groups. The table is sorted in the descending number of bee genes.

						OGs	A.gam	D.mel	A.mel	H.sap	G.gal	T.nig
1	1	1	1	1	1	1,428	1,428	1,428	1,428	1,428	1,428	1,428
1	1	1	n	n	n	704	704	704	704	2,059	1,686	2,373
n	n	n	n	n	n	120	729	572	463	934	441	634
1	1	1	1	1	n	352	352	352	352	352	352	819
1	1	1	n	1	n	326	326	326	326	770	326	900
1	1	1	1	0	1	267	267	267	267	267	0	267
1	1	1	n	1	1	220	220	220	220	608	220	220
0	0	1	1	1	1	116	0	0	116	116	116	116
1	1	n	n	n	n	52	52	52	107	168	158	217
1	1	1	1	n	1	106	106	106	106	106	230	106
1	1	1	n	n	1	105	105	105	105	243	220	105
0	1	1	1	1	1	101	0	101	101	101	101	101

1	n	1	1	1	1	92	92	209	92	92	92	92
1	0	1	1	1	1	82	82	0	82	82	82	82
n	n	n	1	1	1	23	119	139	81	23	23	23
n	n	n	n	1	n	29	107	106	77	87	29	93
1	1	n	1	1	1	30	30	30	72	30	30	30
n	1	1	n	n	n	71	162	71	71	239	190	278
1	n	1	n	n	n	70	70	193	70	251	195	234
1	1	1	1	n	n	68	68	68	68	68	141	170
1	1	1	1	0	n	63	63	63	63	63	0	143
0	0	1	0	0	0	58	0	0	58	0	0	0
n	n	1	n	n	n	53	201	178	53	258	187	270
1	n	n	n	n	n	21	21	55	49	104	71	113
0	1	1	n	n	n	43	0	43	43	136	104	163
n	1	n	n	n	n	15	53	15	40	87	62	75
0	1	1	1	1	n	39	0	39	39	39	39	86
n	1	1	1	1	n	38	77	38	38	38	38	91
n	n	n	n	n	1	11	46	56	38	31	24	11
1	1	n	n	1	n	17	17	17	36	45	17	47
1	n	1	n	1	n	35	35	82	35	106	35	89
1	1	1	0	1	1	34	34	34	34	0	34	34
1	n	n	n	1	n	15	15	36	34	50	15	47

n	1	1	n	1	n	32	66	32	32	82	32	84
0	0	1	1	1	n	30	0	0	30	30	30	72
1	0	1	n	n	n	30	30	0	30	75	67	111
1	n	1	1	1	n	30	30	66	30	30	30	66
n	n	1	1	1	1	27	68	82	27	27	27	27
1	1	n	1	n	n	11	11	11	26	11	25	26
1	1	1	1	0	0	25	25	25	25	25	0	0
1	1	n	1	1	n	10	10	10	25	10	10	24
1	1	1	n	0	n	24	24	24	24	58	0	62
1	1	n	n	1	1	9	9	9	24	21	9	9
n	n	n	n	1	1	9	24	29	24	34	9	9
0	0	1	1	0	1	21	0	0	21	21	0	21
0	0	1	n	n	n	21	0	0	21	58	51	69
0	1	1	n	1	n	21	0	21	21	51	21	64
1	0	1	1	1	n	21	21	0	21	21	21	59
1	1	1	0	0	0	21	21	21	21	0	0	0
n	1	1	1	0	1	21	42	21	21	21	0	21
n	n	n	1	1	n	8	28	31	21	8	8	19
0	0	1	1	0	0	20	0	0	20	20	0	0
0	0	1	n	1	n	20	0	0	20	45	20	52
n	1	1	n	1	1	20	40	20	20	43	20	20

n	1	n	n	1	n	10	22	10	20	25	10	24
0	1	1	1	0	1	19	0	19	19	19	0	19
n	1	n	1	1	1	9	21	9	19	9	9	9
1	1	1	0	0	1	18	18	18	18	0	0	18
1	1	1	n	1	0	18	18	18	18	46	18	0
1	n	1	n	1	1	18	18	39	18	52	18	18
n	n	n	1	n	n	6	22	18	18	6	12	18
0	0	1	0	1	0	17	0	0	17	0	17	0
1	0	1	0	0	0	17	17	0	17	0	0	0
1	n	n	1	1	1	8	8	20	17	8	8	8
0	0	1	0	0	1	16	0	0	16	0	0	16
0	0	1	n	1	1	16	0	0	16	40	16	16
1	0	1	n	1	n	16	16	0	16	44	16	47
1	1	1	n	0	1	16	16	16	16	37	0	16
1	1	n	1	1	0	8	8	8	16	8	8	0
0	1	1	1	1	0	15	0	15	15	15	15	0
n	n	1	n	1	n	15	34	46	15	48	15	47
n	n	n	1	n	1	5	18	17	15	5	11	5
0	1	n	1	1	1	4	0	4	14	4	4	4
1	1	n	1	0	1	7	7	7	14	7	0	7
1	n	n	1	1	n	5	5	14	14	5	5	11

0	0	1	1	1	0	13	0	0	13	13	13	0
0	0	n	1	1	1	6	0	0	13	6	6	6
1	0	1	1	0	1	13	13	0	13	13	0	13
1	0	1	n	1	1	13	13	0	13	31	13	13
0	1	1	1	n	n	12	0	12	12	12	26	37
0	1	1	n	1	1	12	0	12	12	90	12	12
1	0	n	1	1	1	6	6	0	12	6	6	6
1	1	n	1	n	1	6	6	6	12	6	12	6
1	n	1	1	0	1	12	12	26	12	12	0	12
1	n	1	n	n	1	12	12	28	12	31	32	12
n	n	n	1	0	1	5	15	12	12	5	0	5
n	1	1	1	n	n	11	22	11	11	11	23	29
1	1	1	0	0	n	10	10	10	10	0	0	22
n	n	1	1	1	n	10	28	30	10	10	10	21
0	1	1	1	0	0	9	0	9	9	9	0	0
0	n	1	1	1	1	9	0	19	9	9	9	9
1	1	1	0	1	0	9	9	9	9	0	9	0
1	n	1	1	1	0	9	9	23	9	9	9	0
n	n	1	n	1	1	9	21	20	9	20	9	9
0	0	1	n	n	1	8	0	0	8	17	16	8
0	1	1	1	0	n	8	0	8	8	8	0	21

1	1	n	n	n	1	4	4	4	8	9	8	4
1	n	n	1	0	1	3	3	7	8	3	0	3
1	n	n	n	1	1	4	4	9	8	13	4	4
n	0	1	1	1	1	8	18	0	8	8	8	8
0	0	1	1	n	1	7	0	0	7	7	14	7
1	0	1	0	0	1	7	7	0	7	0	0	7
1	0	1	1	1	0	7	7	0	7	7	7	0
1	1	1	0	1	n	7	7	7	7	0	7	15
1	n	n	1	0	n	3	3	10	7	3	0	13
1	n	n	1	n	n	3	3	10	7	3	6	8
n	1	1	n	n	1	7	15	7	7	18	15	7
n	1	n	1	1	n	3	8	3	7	3	3	7
n	n	n	1	1	0	2	5	5	7	2	2	0
0	0	1	1	n	n	6	0	0	6	6	12	17
0	1	1	n	n	1	6	0	6	6	17	15	6
0	n	1	n	n	n	6	0	13	6	28	15	17
1	0	1	1	n	n	6	6	0	6	6	12	14
1	0	n	n	n	n	3	3	0	6	12	8	19
1	1	n	0	1	1	3	3	3	6	0	3	3
n	n	1	0	0	0	6	40	55	6	0	0	0
n	n	1	1	n	n	6	15	16	6	6	14	16

n	n	n	n	n	0	2	5	4	6	6	5	0
0	n	n	1	1	1	1	0	9	5	1	1	1
0	n	n	n	n	n	1	0	2	5	4	2	5
1	0	1	1	n	1	5	5	0	5	5	13	5
1	n	1	1	n	1	5	5	10	5	5	11	5
n	1	1	n	0	1	5	11	5	5	23	0	5
n	n	1	1	n	1	5	14	33	5	5	96	5
n	n	n	1	0	n	2	7	13	5	2	0	4
n	n	n	n	0	n	2	10	10	5	16	0	5
0	0	n	1	1	0	2	0	0	4	2	2	0
0	0	n	n	1	n	2	0	0	4	5	2	11
0	1	1	1	n	1	4	0	4	4	4	11	4
0	1	1	n	0	1	4	0	4	4	8	0	4
0	1	n	n	n	n	2	0	2	4	6	4	8
0	n	n	1	1	0	1	0	2	4	1	1	0
1	1	n	0	0	0	2	2	2	4	0	0	0
1	n	1	1	0	n	4	4	9	4	4	0	8
1	n	1	n	0	1	4	4	8	4	8	0	4
n	0	1	1	1	n	4	8	0	4	4	4	12
n	1	1	0	0	0	4	9	4	4	0	0	0
n	1	1	0	0	1	4	8	4	4	0	0	4

n	1	1	1	0	n	4	8	4	4	4	0	8
n	1	1	1	n	1	4	9	4	4	4	8	4
n	1	n	n	n	0	2	4	2	4	5	4	0
n	1	n	n	n	1	2	5	2	4	4	5	2
n	n	1	1	0	n	4	8	11	4	4	0	10
n	n	1	n	n	1	4	11	9	4	10	8	4
n	n	n	0	0	n	1	7	4	4	0	0	2
n	n	n	n	0	1	2	5	7	4	5	0	2
0	0	1	1	0	n	3	0	0	3	3	0	7
0	0	1	n	0	0	3	0	0	3	8	0	0
0	0	n	1	1	n	1	0	0	3	1	1	3
0	1	1	0	0	0	3	0	3	3	0	0	0
0	1	1	0	0	1	3	0	3	3	0	0	3
0	n	1	1	1	0	3	0	7	3	3	3	0
0	n	n	1	n	n	1	0	3	3	1	2	2
1	0	1	0	1	1	3	3	0	3	0	3	3
1	0	1	1	0	n	3	3	0	3	3	0	7
1	0	n	1	1	n	1	1	0	3	1	1	4
1	1	1	n	n	0	3	3	3	3	6	6	0
1	n	1	1	0	0	3	3	12	3	3	0	0
n	0	1	n	1	1	3	7	0	3	6	3	3

n	0	1	n	n	n	3	7	0	3	14	7	11
n	0	n	1	1	1	1	3	0	3	1	1	1
n	1	1	1	0	0	3	7	3	3	3	0	0
n	1	1	n	0	n	3	8	3	3	6	0	10
n	1	n	n	0	n	1	3	1	3	3	0	2
n	n	1	0	0	1	3	8	7	3	0	0	3
n	n	1	1	1	0	3	6	6	3	3	3	0
n	n	n	0	0	0	1	3	2	3	0	0	0
n	n	n	n	0	0	1	2	4	3	3	0	0
0	0	1	0	0	n	2	0	0	2	0	0	4
0	0	1	0	1	1	2	0	0	2	0	2	2
0	0	1	n	1	0	2	0	0	2	4	2	0
0	0	n	n	1	1	1	0	0	2	3	1	1
0	0	n	n	n	0	1	0	0	2	2	3	0
0	0	n	n	n	1	1	0	0	2	3	2	1
0	0	n	n	n	n	1	0	0	2	3	3	4
0	1	n	1	0	0	1	0	1	2	1	0	0
0	1	n	1	0	1	1	0	1	2	1	0	1
0	1	n	1	n	1	1	0	1	2	1	2	1
0	1	n	1	n	n	1	0	1	2	1	2	4
0	1	n	n	0	n	1	0	1	2	2	0	2

0	1	n	n	1	1	1	0	1	2	2	1	1
0	1	n	n	1	n	1	0	1	2	3	1	6
0	n	1	0	1	1	2	0	4	2	0	2	2
0	n	1	n	1	n	2	0	4	2	5	2	5
1	0	1	0	0	n	2	2	0	2	0	0	4
1	0	1	0	1	0	2	2	0	2	0	2	0
1	0	1	n	0	1	2	2	0	2	4	0	2
1	0	n	0	0	0	1	1	0	2	0	0	0
1	0	n	1	0	1	1	1	0	2	1	0	1
1	0	n	n	1	1	1	1	0	2	2	1	1
1	1	1	0	n	1	2	2	2	2	0	6	2
1	1	1	n	0	0	2	2	2	2	5	0	0
1	1	n	0	0	1	1	1	1	2	0	0	1
1	1	n	0	1	n	1	1	1	2	0	1	2
1	1	n	1	0	0	1	1	1	2	1	0	0
1	1	n	n	0	1	1	1	1	2	6	0	1
1	1	n	n	0	n	1	1	1	2	3	0	4
1	1	n	n	n	0	1	1	1	2	4	2	0
1	n	1	0	0	0	2	2	5	2	0	0	0
1	n	1	0	0	1	2	2	6	2	0	0	2
1	n	1	0	0	n	2	2	4	2	0	0	4

1	n	1	0	1	1	2	2	4	2	0	2	2
1	n	1	1	n	n	2	2	5	2	2	4	5
1	n	1	n	0	0	2	2	5	2	16	0	0
1	n	1	n	0	n	2	2	5	2	4	0	6
1	n	n	1	n	1	1	1	3	2	1	2	1
1	n	n	n	0	1	1	1	2	2	2	0	1
1	n	n	n	1	0	1	1	2	2	2	1	0
n	0	1	1	n	n	2	12	0	2	2	12	18
n	0	1	n	1	n	2	4	0	2	7	2	17
n	1	1	1	1	0	2	4	2	2	2	2	0
n	1	1	n	n	0	2	4	2	2	4	4	0
n	1	n	0	0	0	1	11	1	2	0	0	0
n	1	n	1	1	0	1	2	1	2	1	1	0
n	1	n	1	n	n	1	2	1	2	1	3	6
n	1	n	n	1	1	1	2	1	2	2	1	1
n	n	1	1	0	0	2	4	4	2	2	0	0
n	n	1	1	0	1	2	4	6	2	2	0	2
n	n	n	0	0	1	1	3	2	2	0	0	1
n	n	n	0	1	1	1	4	3	2	0	1	1
n	n	n	0	n	n	1	8	2	2	0	2	2
n	n	n	n	1	0	1	4	7	2	2	1	0

0	0	1	0	1	n	1	0	0	1	0	1	2
0	0	1	1	n	0	1	0	0	1	1	2	0
0	0	1	n	0	1	1	0	0	1	3	0	1
0	1	1	0	0	n	1	0	1	1	0	0	3
0	1	1	0	1	1	1	0	1	1	0	1	1
0	1	1	n	0	n	1	0	1	1	2	0	2
0	1	1	n	1	0	1	0	1	1	8	1	0
0	1	1	n	n	0	1	0	1	1	2	2	0
0	n	1	1	0	0	1	0	3	1	1	0	0
0	n	1	1	0	1	1	0	2	1	1	0	1
0	n	1	1	0	n	1	0	2	1	1	0	2
0	n	1	1	1	n	1	0	2	1	1	1	2
0	n	1	1	n	1	1	0	2	1	1	2	1
0	n	1	1	n	n	1	0	2	1	1	2	3
0	n	1	n	0	1	1	0	2	1	2	0	1
0	n	1	n	1	1	1	0	2	1	2	1	1
0	n	1	n	n	1	1	0	5	1	2	2	1
1	0	1	0	1	n	1	1	0	1	0	1	2
1	0	1	0	n	0	1	1	0	1	0	2	0
1	0	1	1	0	0	1	1	0	1	1	0	0
1	0	1	n	0	0	1	1	0	1	2	0	0

1	0	1	n	n	1	1	1	0	1	2	3	1
1	1	1	0	n	0	1	1	1	1	0	2	0
1	1	1	0	n	n	1	1	1	1	0	2	2
1	1	1	1	n	0	1	1	1	1	1	2	0
1	n	1	0	n	n	1	1	2	1	0	2	3
1	n	1	n	1	0	1	1	2	1	2	1	0
n	0	1	0	0	0	1	2	0	1	0	0	0
n	0	1	0	0	n	1	2	0	1	0	0	2
n	0	1	1	0	0	1	2	0	1	1	0	0
n	0	1	1	0	n	1	2	0	1	1	0	4
n	0	1	n	n	0	1	2	0	1	2	2	0
n	0	1	n	n	1	1	2	0	1	2	2	1
n	1	1	0	1	0	1	2	1	1	0	1	0
n	1	1	1	n	0	1	2	1	1	1	2	0
n	1	1	n	0	0	1	4	1	1	3	0	0
n	n	1	0	0	n	1	3	3	1	0	0	2
n	n	1	0	n	n	1	4	3	1	0	2	2
n	n	1	1	n	0	1	2	2	1	1	2	0
n	n	1	n	0	1	1	6	3	1	2	0	1
n	n	1	n	0	n	1	2	2	1	2	0	3
n	n	1	n	n	0	1	2	2	1	5	2	0

0	1	0	0	0	0	7	0	7	0	0	0	0
0	1	0	0	0	1	9	0	9	0	0	0	9
0	1	0	0	0	n	1	0	1	0	0	0	3
0	1	0	0	1	0	5	0	5	0	0	5	0
0	1	0	0	1	1	3	0	3	0	0	3	3
0	1	0	0	n	n	1	0	1	0	0	2	2
0	1	0	1	0	0	11	0	11	0	11	0	0
0	1	0	1	0	1	7	0	7	0	7	0	7
0	1	0	1	1	0	10	0	10	0	10	10	0
0	1	0	1	1	1	19	0	19	0	19	19	19
0	1	0	1	1	n	9	0	9	0	9	9	22
0	1	0	1	n	1	1	0	1	0	1	2	1
0	1	0	n	0	1	1	0	1	0	2	0	1
0	1	0	n	1	1	2	0	2	0	4	2	2
0	1	0	n	1	n	3	0	3	0	9	3	8
0	1	0	n	n	1	2	0	2	0	4	4	2
0	1	0	n	n	n	3	0	3	0	7	8	6
0	n	0	1	0	0	1	0	2	0	1	0	0
0	n	0	1	1	0	4	0	43	0	4	4	0
0	n	0	1	1	1	1	0	3	0	1	1	1
0	n	0	1	1	n	1	0	2	0	1	1	2

0	n	0	1	n	1	1	0	2	0	1	2	1
0	n	0	n	0	1	1	0	20	0	2	0	1
0	n	0	n	1	1	1	0	2	0	2	1	1
0	n	0	n	1	n	2	0	4	0	5	2	12
0	n	0	n	n	n	1	0	4	0	12	2	3
1	0	0	0	0	0	123	123	0	0	0	0	0
1	0	0	0	0	1	20	20	0	0	0	0	20
1	0	0	0	0	n	1	1	0	0	0	0	2
1	0	0	0	1	0	14	14	0	0	0	14	0
1	0	0	0	1	1	3	3	0	0	0	3	3
1	0	0	0	n	1	1	1	0	0	0	2	1
1	0	0	1	0	0	1	1	0	0	1	0	0
1	0	0	1	0	1	10	10	0	0	10	0	10
1	0	0	1	0	n	1	1	0	0	1	0	2
1	0	0	1	1	0	9	9	0	0	9	9	0
1	0	0	1	1	1	24	24	0	0	24	24	24
1	0	0	1	1	n	4	4	0	0	4	4	8
1	0	0	1	n	0	1	1	0	0	1	3	0
1	0	0	1	n	1	3	3	0	0	3	6	3
1	0	0	n	0	n	2	2	0	0	7	0	4
1	0	0	n	1	0	1	1	0	0	4	1	0

1	0	0	n	1	1	3	3	0	0	7	3	3
1	0	0	n	1	n	3	3	0	0	7	3	8
1	0	0	n	n	1	1	1	0	0	2	2	1
1	0	0	n	n	n	2	2	0	0	5	7	5
1	1	0	0	0	0	5	5	5	0	0	0	0
1	1	0	0	0	1	8	8	8	0	0	0	8
1	1	0	0	0	n	2	2	2	0	0	0	5
1	1	0	0	1	0	6	6	6	0	0	6	0
1	1	0	0	1	1	5	5	5	0	0	5	5
1	1	0	1	0	0	5	5	5	0	5	0	0
1	1	0	1	0	1	24	24	24	0	24	0	24
1	1	0	1	0	n	4	4	4	0	4	0	11
1	1	0	1	1	0	8	8	8	0	8	8	0
1	1	0	1	1	1	96	96	96	0	96	96	96
1	1	0	1	1	n	36	36	36	0	36	36	77
1	1	0	1	n	1	10	10	10	0	10	23	10
1	1	0	1	n	n	2	2	2	0	2	4	6
1	1	0	n	0	1	1	1	1	0	2	0	1
1	1	0	n	0	n	6	6	6	0	14	0	16
1	1	0	n	1	0	1	1	1	0	2	1	0
1	1	0	n	1	1	15	15	15	0	64	15	15

1	1	0	n	1	n	22	22	22	0	54	22	69
1	1	0	n	n	0	1	1	1	0	2	2	0
1	1	0	n	n	1	6	6	6	0	16	45	6
1	1	0	n	n	n	31	31	31	0	86	77	112
1	n	0	0	0	1	1	1	17	0	0	0	1
1	n	0	0	0	n	1	1	2	0	0	0	2
1	n	0	1	0	0	3	3	7	0	3	0	0
1	n	0	1	0	1	3	3	7	0	3	0	3
1	n	0	1	1	1	6	6	16	0	6	6	6
1	n	0	1	1	n	3	3	8	0	3	3	7
1	n	0	1	n	0	1	1	2	0	1	2	0
1	n	0	1	n	1	1	1	2	0	1	2	1
1	n	0	n	1	1	1	1	2	0	2	1	1
1	n	0	n	1	n	3	3	7	0	7	3	6
1	n	0	n	n	n	3	3	6	0	7	6	10
n	0	0	0	0	0	1	2	0	0	0	0	0
n	0	0	0	0	1	1	2	0	0	0	0	1
n	0	0	0	1	0	1	2	0	0	0	1	0
n	0	0	1	0	1	1	2	0	0	1	0	1
n	0	0	1	1	1	2	5	0	0	2	2	2
n	0	0	1	1	n	1	3	0	0	1	1	2

n	0	0	n	0	n	1	3	0	0	2	0	2
n	0	0	n	1	0	1	29	0	0	2	1	0
n	0	0	n	1	n	3	8	0	0	11	3	22
n	0	0	n	n	1	1	10	0	0	2	2	1
n	0	0	n	n	n	2	29	0	0	24	7	35
n	1	0	0	0	0	1	2	1	0	0	0	0
n	1	0	0	1	0	2	4	2	0	0	2	0
n	1	0	0	1	n	1	2	1	0	0	1	4
n	1	0	0	n	1	1	2	1	0	0	2	1
n	1	0	1	0	0	1	2	1	0	1	0	0
n	1	0	1	0	1	1	2	1	0	1	0	1
n	1	0	1	1	0	1	2	1	0	1	1	0
n	1	0	1	1	1	12	24	12	0	12	12	12
n	1	0	1	1	n	3	18	3	0	3	3	6
n	1	0	1	n	n	1	3	1	0	1	2	3
n	1	0	n	1	1	2	4	2	0	5	2	2
n	1	0	n	1	n	1	2	1	0	3	1	5
n	1	0	n	n	0	1	3	1	0	2	2	0
n	1	0	n	n	n	2	6	2	0	10	9	12
n	n	0	0	0	0	1	3	4	0	0	0	0
n	n	0	1	0	1	1	2	2	0	1	0	1

n	n	0	1	1	1	5	13	11	0	5	5	5
n	n	0	1	1	n	1	2	4	0	1	1	5
n	n	0	1	n	0	1	2	2	0	1	2	0
n	n	0	1	n	1	1	3	8	0	1	2	1
n	n	0	1	n	n	1	2	2	0	1	2	2
n	n	0	n	0	1	1	5	2	0	3	0	1
n	n	0	n	1	1	1	3	2	0	2	1	1
n	n	0	n	1	n	1	2	23	0	4	1	8
n	n	0	n	n	n	1	3	2	0	2	2	2

Table S11. Comparative Intron Patterns.

Patterns of shared intron distribution among the three insect and three vertebrate considered based on 4,441 orthologous groups defined above (Tables S8, S9, S10).

D.mel	A.gam	A.mel	H.sap	G.gal	T.nig	Count
0	0	0	X	X	X	16,694
0	0	X	0	0	0	7,209
0	0	X	X	X	X	4,617
0	0	0	0	0	X	4,360
0	0	0	X	X	0	4,120
0	X	0	0	0	0	3,236
X	0	0	0	0	0	2,452
X	X	X	X	X	X	2,199
0	0	0	0	X	0	2,110
0	0	0	X	0	0	1,710
0	0	0	X	0	X	1,612
X	X	0	0	0	0	1,546
X	0	X	X	X	X	998
0	X	X	X	X	X	993

X	X	X	0	0	0	870
0	0	X	X	X	0	833
X	X	0	X	X	x	810
X	0	0	X	X	X	764
0	X	0	X	x	X	714
0	0	0	0	X	X	713
X	0	X	0	0	0	678
0	X	X	0	0	0	540
X	X	X	X	X	0	389
0	0	X	X	0	X	328
0	0	X	0	0	X	226
X	0	X	X	X	0	172
0	X	X	X	X	0	171
X	0	0	X	X	0	170
X	X	X	X	0	X	167
0	0	X	X	0	0	162
0	0	X	0	X	X	157
0	X	0	X	X	0	151
X	X	0	X	X	0	142
0	0	X	0	X	0	122
0	X	0	0	0	X	95

0	X	0	x	0	x	74
0	X	X	X	0	X	74
X	0	0	X	0	0	64
X	X	0	x	0	X	62
X	0	X	x	0	X	61
0	X	0	X	0	0	61
X	0	0	0	0	X	58
X	x	X	X	0	0	55
X	0	0	X	0	x	46
X	X	x	0	x	x	45
X	0	X	X	0	0	45
X	0	0	0	X	0	44
X	X	X	0	0	X	42
0	X	0	0	X	0	41
X	X	0	0	0	X	39
0	X	X	0	X	X	38
X	O	X	0	0	X	37
X	X	X	0	X	0	35
X	X	0	X	0	0	31
0	X	X	0	0	X	31
X	0	X	0	X	X	30

X	X	0	0	X	0	29
x	X	0	0	X	X	27
X	0	0	0	X	X	26
0	X	X	X	0	0	22
0	X	0	0	X	X	22
0	X	X	0	X	0	21
X	0	X	0	X	0	20

Table S12: One to One to One Orthologs with Duplications in Honey Bee.

Duplications of bee genes that have single-copy orthologs in the six Metazoan analyzed. They are indicative of recently evolved, lineage-specific functions.

A.mel	D.mel	A.gam	H.sap	G.gal	T.nig	Fly (human) gene	Annotation
2	1	0	1	0	1	CG8184	protein modification;
							GO:0006464; proteolysis and
							peptidolysis; GO:0006508;
							ubiquitin cycle; GO:0006512
2	1	1	1	1	0	norpA	calcium-mediated signaling;
							GO:0019722; cytosolic calcium
							ion concentration elevation;
							GO:0007204; diacylglycerol
							biosynthesis; GO:0006651; light-
							induced release of internally
							sequestered calcium ion ($\mathrm{Ca} 2+$);
							GO:0008377; perception of
							smell; GO:000
2	1	1	1	1	1	mind-bomb	DNA metabolism; GO:0006259;
							DNA replication; GO:0006260;
							cell cycle; GO:0007049; cell
							proliferation; GO:0008283; eye
							morphogenesis (sensu
							Endopterygota); GO:0007456;
							nucleobase, nucleoside,
							nucleotide and nucleic acid
							metabolism; GO:0006139; p
2	1	1	1	1	1	Spt6	RNA elongation; GO:0006354;
							RNA elongation from Pol II

							promoter; GO:0006368; chromatin assembly or disassembly; GO:0006333; intracellular signaling cascade; GO:0007242; transcription initiation from Pol II promoter; GO:0006367
2	1	1	1	0	1	CG9311	G-protein coupled receptor protein signaling pathway; GO:0007186; protein amino acid dephosphorylation; GO:0006470; signal transduction; GO:0007165
2	1	1	1	1	1	CG31004	cell-matrix adhesion; GO:0007160
2	1	1	1	1	1	CG31935	
2	1	1	1	1	1	Top3beta	DNA catabolism, endonucleolytic; GO:0000737; DNA modification; GO:0006304; DNA topological change; GO:0006265; DNA unwinding; GO:0006268; tRNA aminoacylation for protein translation; GO:0006418
2	1	1	1	1	1	CG17492	protein ubiquitination; GO:0016567
2	1	1	1	1	1	mei-9	DNA recombination; GO:0006310; DNA repair; GO:0006281; chromosome segregation; GO:0007059; double-strand break repair; GO:0006302; meiosis; GO:0007126; meiotic chromosome segregation;

2	0	1	1	1	1	ENSP00000293303	Kelch-like protein 10
2	1	1	1	1	0	CG14085	
2	1	1	1	1	1	CG7430	electron transport; GO:0006118; glycine catabolism; GO:0006546; glycolysis; GO:0006096; lipoamide metabolism; GO:0006748; tricarboxylic acid cycle; GO:0006099
2	1	1	1	1	1	CG7433	amino acid biosynthesis; GO:0008652; amino acid metabolism; GO:0006520; gamma-aminobutyric acid metabolism; GO:0009448
2	1	1	1	0	1	CG32647	DNA methylation; GO:0006306
2	1	1	1	1	0	CG11963	tricarboxylic acid cycle; GO:0006099
2	1	1	1	1	0	Oatp26F	organic anion transport; GO:0015711
2	1	1	1	1	1	CG13855	
2	1	0	1	1	1	CG10555	
2	1	1	1	1	1	CG1461	amino acid catabolism; GO:0009063; aromatic amino acid family metabolism; GO:0009072; biosynthesis; GO:0009058; metal ion transport; GO:0030001
2	1	1	1	1	1	b	amino acid metabolism; GO:0006520; beta-alanine biosynthesis; GO:0019483;

pigmentation; GO:0048066;
sulfur metabolism; GO:0006790;
synaptic transmission;
GO:0007268; uracil catabolism;
GO:0006212

2	1	1	1	1	1	CG6903	
2	0	1	1	1	1	ENSP00000347583	Major facilitator superfamily MFS_1
2	1	1	1	1	1	CG6321	amino acid metabolism; GO:0006520; biosynthesis; GO:0009058
2	1	0	1	1	1	Thd1	mismatch repair; GO:0006298; nucleotide-excision repair; GO:0006289; regulation of transcription, DNA-dependent; GO:0006355
2	1	1	1	1	1	CG11876	pyruvate metabolism; GO:0006090; regulation of transcription, DNA-dependent; GO:0006355; tricarboxylic acid cycle; GO:0006099
2	0	1	1	0	1	ENSP00000319429	Muscleblind-like protein (Tripletexpansion RNA-binding protein).
2	1	1	0	1	1	CG13502	
2	0	1	1	1	1	ENSP00000244490	Werner helicase interacting protein
2	1	1	1	1	0	CG10793	response to oxidative stress; GO:0006979

2	1	1	1	0	1	CG12018	DNA repair; GO:0006281; DNA replication; GO:0006260
2	1	1	1	1	1	O-fut1	O-linked glycosylation; GO:0006493; neurogenesis; GO:0007399; regulation of Notch signaling pathway; GO:0008593
2	1	1	1	1	1	CG12030	galactose metabolism; GO:0006012; nucleotide-sugar metabolism; GO:0009225
2	1	1	1	1	1	CG10908	ER-associated protein catabolism; GO:0030433; misfolded or incompletely synthesized protein catabolism; GO:0006515
2	1	1	1	1	1	CG5281	
2	1	1	1	1	1	CG9886	carbohydrate metabolism; GO:0005975
2	0	1	1	1	1	ENSP00000317998	Ribonuclease P protein subunit p40 (EC 3.1.26.5)
2	1	1	1	1	1	Rpb5	mRNA transcription; GO:0009299; transcription from Pol II promoter; GO:0006366
2	1	0	1	1	1	mars	cell-cell signaling; GO:0007267
2	0	1	1	1	1	ENSP00000298420	Homeobox / paired-like homeodomain protein
2	1	1	1	1	0	CG4743	transport; GO:0006810
2	1	1	1	0	1	ENSP00000306982	Pancreas specific transcription

factor, 1 a .

2	0	1	1	1	1	Fer1	regulation of transcription;
2	1	1	1	0	0	CG12935	
2	1	1	0	0	1	CG12910	
2	1	1	1	0	1	CG7215	
2	1	1	1	1	0	CG6674	
2	1	1	1	1			CG8407

2	1	1	1	1	1	CG4774	phospholipid biosynthesis;
				GO:0008654			

Table S13. Comparative Domains.

From file: URL http://azra.embl.de/~zdobnov/Bee2/top500_domains.html

Statistically significant differences are marked in bold (p-value of chi-square test <0.01 without correction for multiple tests).

Apis mellifera (honey bee)	Drosophila melanogaster	Homo sapiens (man)		
10157 total genes (71% w domains)	13450 total genes ($68 \% \mathrm{w}$ domains)	22218 total genes ($72 \% \mathrm{w}$ domains)	Family	GO terms
2275	3171	5083	Transmembrane	
1081	2895	4083	Signal peptide	
247 (1)	314 (1)	778 (1)	IPR007087: Zinc finger, C2H2-type	Molecular Function: nucleic acid binding (GO:0003676), Cellular Component: nucleus (GO:0005634), Molecular Function: zinc ion binding (GO:0008270)
201 (2)	207 (3)	464 (3)	IPR000719: Protein kinase	Molecular Function: protein kinase activity (GO:0004672), Molecular Function: ATP binding (GO:0005524), Biological Process: protein amino acid phosphorylation (GO:0006468)
184 (3)	184 (4)	261 (9)	IPR001680: WD-40 repeat	

120 (4)	121 (8)	462 (4)	IPR003599: Immunoglobulin subtype	
117 (5)	119 (9)	285 (7)	IPR001841: Zinc finger, RING-type	Cellular Component: ubiquitin ligase complex (GO:0000151), Molecular Function: ubiquitin-protein ligase activity (GO:0004842), Molecular Function: zinc ion binding (GO:0008270), Biological Process: protein ubiquitination (GO:0016567)
116 (6)	122 (7)	133 (28)	IPR003593: AAA ATPase	Molecular Function: nucleotide binding (GO:0000166), Molecular Function: nucleoside-triphosphatase activity (GO:0017111)
114 (7)	128 (6)	236 (12)	IPR000504: RNA-binding region RNP-1 (RNA recognition motif)	Molecular Function: nucleic acid binding (GO:0003676)
107 (8)	107 (10)	221 (15)	IPR001611: Leucine-rich repeat	
100 (9)	103 (11)	244 (11)	IPR002290: Serine/threonine protein kinase	Molecular Function: protein serine/threonine kinase activity (GO:0004674), Molecular Function: ATP binding (GO:0005524), Biological Process: protein amino acid phosphorylation (GO:0006468)
98 (10)	130 (5)	99 (38)	IPR011701: Major facilitator superfamily MFS_1	
97 (11)	82 (20)	247 (10)	IPR002110: Ankyrin	
97 (12)	102 (12)	369 (5)	IPR007110: Immunoglobulinlike	
96 (13)	100 (14)	220 (16)	IPR003598: Immunoglobulin C2 type	

89 (14)	99 (15)	226 (14)	IPR001356: Homeobox	Molecular Function: DNA binding (GO:0003677), Molecular Function: transcription factor activity (GO:0003700), Cellular Component: nucleus (GO:0005634), Biological Process: regulation of transcription, DNA-dependent (GO:0006355)
83 (15)	61 (33)	()	IPR004117: Olfactory receptor, Drosophila	Molecular Function: olfactory receptor activity (GO:0004984), Molecular Function: odorant binding (GO:0005549), Biological Process: perception of smell (GO:0007608), Cellular Component: membrane (GO:0016020)
78 (16)	67 (30)	265 (8)	IPR001849: Pleckstrin-like	
78 (17)	74 (25)	109 (34)	IPR011545: DEAD/DEAH box helicase, N-terminal	Molecular Function: nucleic acid binding (GO:0003676), Molecular Function: helicase activity (GO:0004386), Molecular Function: ATP binding (GO:0005524)
75 (18)	76 (22)	140 (26)	IPR001440: TPR repeat	
74 (19)	76 (23)	107 (35)	IPR001650: Helicase, Cterminal	Molecular Function: nucleic acid binding (GO:0003676), Molecular Function: helicase activity (GO:0004386), Molecular Function: ATP binding (GO:0005524)
73 (20)	71 (28)	208 (17)	IPR001452: SH3	
72 (21)	76 (24)	160 (23)	IPR003591: Leucine-rich repeat, typical subtype	
71 (22)	68 (29)	166 (22)	IPR000210: BTB/POZ	Molecular Function: protein binding (GO:0005515)
69 (23)	84 (19)	183 (19)	IPR002048: Calcium-binding EF-hand	Molecular Function: calcium ion binding (GO:0005509)

$69(24)$	$89(16)$	$\mathbf{2 3 2 (1 3)}$	IPR003656: Zinc finger, BED- type predicted	Molecular Function: DNA binding (GO:0003677)
$67(25)$	$56(36)$	$102(37)$	IPR000357: HEAT	
$66(26)$	$63(31)$	$143(25)$	IPR001478: PDZ/DHR/GLGF	Molecular Function: protein binding (GO:0005515)
$63(27)$	$56(39)$	$180(20)$	IPR011511: Variant SH3	
$58(28)$	$\mathbf{2 4 3 (2)}$	$120(30)$	IPR001254: Peptidase S1 and S6, chymotrypsin/Hap	Molecular Function: trypsin activity (GO:0004295), Biological Process: proteolysis and peptidolysis (GO:0006508)
$58(29)$	$61(32)$	$179(21)$	IPR003961: Fibronectin, type III	191 (18)
$57(30)$	$61(34)$	IPR006210: Type I EGF		
$55(31)$	$71(27)$	$\mathbf{7 0 4 (2)}$	IPR000276: Rhodopsin-like GPCR superfamily	Molecular Function: rhodopsin-like receptor activity (GO:0001584), Biological Process: G-protein coupled receptor protein signaling pathway (GO:0007186), Cellular Component: integral to membrane (GO:0016021)
$53(32)$	$58(35)$	$112(31)$	IPR001092: Basic helix-loop- helix dimerisation region bHLH	Cellular Component: nucleus (GO:0005634), Molecular Function: transcription regulator activity (GO:0030528), Biological Process:
regulation of transcription				
(GO:0045449)				

51 (34)	55 (40)	130 (29)	IPR001806: Ras GTPase	Molecular Function: GTP binding (GO:0005525), Biological Process: small GTPase mediated signal transduction (GO:0007264)
48 (35)	40 (47)	134 (27)	IPR000008: C2	
47 (36)	86 (18)	61 (64)	IPR001128: Cytochrome P450	Molecular Function: monooxygenase activity (GO:0004497), Molecular Function: iron ion binding (GO:0005506), Biological Process: electron transport (GO:0006118), Molecular Function: heme binding (GO:0020037)
44 (37)	40 (50)	150 (24)	IPR006209: EGF-like	
43 (38)	56 (37)	57 (68)	IPR002198: Short-chain dehydrogenase/reductase SDR	Biological Process: metabolism (GO:0008152), Molecular Function: oxidoreductase activity (GO:0016491)
40 (39)	42 (45)	81 (48)	IPR001965: Zinc finger, PHDtype	Molecular Function: protein binding (GO:0005515), Biological Process: regulation of transcription, DNAdependent (GO:0006355), Molecular Function: zinc ion binding (GO:0008270)
39 (40)	56 (38)	49 (83)	IPR003439: ABC transporter related	Molecular Function: ATP binding (GO:0005524), Molecular Function: ATPase activity (GO:0016887)
39 (41)	41 (46)	44 (102)	IPR003959: AAA ATPase, central region	Molecular Function: ATP binding (GO:0005524)
38 (42)	81 (21)	2 (1621)	IPR002557: Chitin binding Peritrophin-A	Cellular Component: extracellular region (GO:0005576), Biological Process: chitin metabolism (GO:0006030), Molecular Function: chitin binding (GO:0008061)

$33(43)$	$43(44)$	$44(101)$	IPR002172: Low density lipoprotein-receptor, class A	
$33(44)$	$38(52)$	$111(32)$	IPR005821: Ion transport protein	Molecular Function: ion channel activity (GO:0005216), Biological Process: ion transport (GO:0006811), Cellular Component: membrane (GO:0016020)
$32(45)$	$46(43)$	$54(71)$	IPR001993: Mitochondrial substrate carrier	Molecular Function: binding (GO:0005488), Biological Process: transport (GO:0006810), Cellular Component: membrane (GO:0016020)
$31(46)$	$100(13)$	0	IPR000618: Insect cuticle protein	Molecular Function: structural constituent of cuticle (GO:0042302)
$31(47)$	$32(62)$	$109(33)$	IPR000980: SH2 motif	Biological Process: intracellular signaling cascade (GO:0007242)
$31(48)$	$34(59)$	$69(54)$	IPR001781: LIM, zinc- binding	Molecular Function: zinc ion binding (GO:0008270)
$30(49)$	$30(67)$	$92(39)$	IPR001245: Tyrosine protein kinase	Molecular Function: protein-tyrosine kinase activity (GO:0004713), Molecular Function: ATP binding (GO:0005524), Biological Process: protein amino acid phosphorylation (GO:0006468)
$29(50)$	$32(63)$	$103(36)$	IPR001881: EGF-like calcium-binding	Molecular Function: calcium ion binding (GO:0005509)
$28(51)$	$31(66)$	$86(42)$	IPR000048: IQ calmodulin- binding region	IPR001214: Nuclear protein SET
$28(52)$	$27(78)$	$44(98)$	$60(66)$	IPR001810: Cyclin-like F-box

27 (54)	32 (60)	46 (90)	IPR000608: Ubiquitinconjugating enzyme, E2	Biological Process: protein modification (GO:0006464), Biological Process: ubiquitin cycle (GO:0006512), Molecular Function: ubiquitin-like activating enzyme activity (GO:0008642)
27 (55)	40 (49)	49 (81)	IPR001623: Heat shock protein DnaJ, N-terminal	Biological Process: protein folding (GO:0006457), Molecular Function: heat shock protein binding (GO:0031072), Molecular Function: unfolded protein binding (GO:0051082)
27 (56)	35 (56)	15 (317)	IPR002018: Carboxylesterase, type B	
26 (57)	24 (93)	50 (77)	IPR000571: Zinc finger, CCCH-type	Molecular Function: nucleic acid binding (GO:0003676)
26 (58)	29 (71)	78 (51)	IPR001660: Sterile alpha motif SAM	
26 (59)	26 (84)	45 (93)	IPR001752: Kinesin, motor region	Molecular Function: microtubule motor activity (GO:0003777), Molecular Function: ATP binding (GO:0005524), Cellular Component: microtubule associated complex (GO:0005875), Biological Process: microtubule-based movement (GO:0007018)
26 (60)	26 (85)	62 (62)	IPR002219: Protein kinase C, phorbol ester/diacylglycerol binding	Biological Process: intracellular signaling cascade (GO:0007242)
26 (61)	89 (17)	1 (3049)	IPR012934: Zinc finger, ADtype	
25 (62)	20 (123)	57 (67)	IPR000219: DH	
25 (63)	25 (88)	83 (46)	IPR000483: Cysteine-rich flanking region, C-terminal	

$\left.\begin{array}{|c|c|c|l|l|}\hline 25(64) & 27(79) & 65(59) & \begin{array}{l}\text { IPR001715: Calponin-like } \\ \text { actin-binding }\end{array} & \\ \hline 24(65) & 24(97) & 48(87) & \begin{array}{l}\text { IPR001005: Myb, DNA- } \\ \text { binding }\end{array} & \begin{array}{l}\text { Molecular Function: DNA binding } \\ \text { (GO:0003677), Cellular Component: } \\ \text { nucleus (GO:0005634) }\end{array} \\ \hline 24(66) & 24(98) & 44(100) & \begin{array}{l}\text { IPR001878: Zinc finger, } \\ \text { CCHC-type }\end{array} & \begin{array}{l}\text { Molecular Function: nucleic acid binding } \\ (G O: 0003676)\end{array} \\ \hline 24(67) & \mathbf{1 3 (2 1 8)} & 0 & \begin{array}{l}\text { IPR003534: Major royal jelly } \\ \text { protein }\end{array} & \\ \hline 23(68) & 20(122) & 68(55) & \text { IPR000198: RhoGAP } & \\ \hline 23(69) & 24(94) & 53(73) & \text { IPR000626: Ubiquitin } & \begin{array}{l}\text { Biological Process: protein modification } \\ \text { (GO:0006464) }\end{array} \\ \hline 23(70) & 22(103) & 62(61) & \begin{array}{l}\text { IPR000910: HMG1/2 (high } \\ \text { mobility group) box }\end{array} & \begin{array}{l}\text { Molecular Function: DNA binding } \\ \text { (GO:0003677), Biological Process: } \\ \text { regulation of transcription, DNA- } \\ \text { dependent (GO:0006355) }\end{array} \\ \hline 23(71) & 25(89) & 53(74) & \begin{array}{l}\text { IPR000961: Protein kinase, C- } \\ \text { terminal }\end{array} & \begin{array}{l}\text { Molecular Function: protein } \\ \text { serine/threonine kinase activity } \\ \text { (GO:0004674), Molecular Function: }\end{array} \\ \hline \text { ATP binding (GO:0005524), Biological } \\ \text { Process: protein amino acid } \\ \text { phosphorylation (GO:0006468) }\end{array}\right\}$
\(\left.$$
\begin{array}{|c|c|c|l|l|}\hline 22(76) & 22(106) & 54(70) & \begin{array}{l}\text { IPR001394: Peptidase C19, } \\
\text { ubiquitin carboxyl-terminal } \\
\text { hydrolase 2 }\end{array} & \begin{array}{l}\text { Molecular Function: cysteine-type } \\
\text { endopeptidase activity (GO:0004197), } \\
\text { Molecular Function: ubiquitin } \\
\text { thiolesterase activity (GO:0004221), } \\
\text { Biological Process: ubiquitin-dependent } \\
\text { protein catabolism (GO:0006511) }\end{array} \\
\hline 22(77) & 30(69) & 61(65) & \begin{array}{l}\text { IPR003579: Ras small } \\
\text { GTPase, Rab type }\end{array} & \begin{array}{l}\text { Molecular Function: GTP binding } \\
\text { (GO:0005525), Biological Process: small } \\
\text { GTPase mediated signal transduction } \\
\text { (GO:0007264), Biological Process: }\end{array}
$$

protein transport (GO:0015031)\end{array}\right]\)| $22(78)$ |
| :--- |
| $21(79)$ |

$21(85)$	$21(120)$	$44(103)$	IPR006029: Neurotransmitter- gated ion-channel transmembrane region	Biological Process: ion transport (GO:0006811), Cellular Component: membrane (GO:0016020), Molecular Function: neurotransmitter receptor activity (GO:0030594)
$21(86)$	$21(121)$	$46(91)$	IPR006202: Neurotransmitter- gated ion-channel ligand- binding	Molecular Function: extracellular ligand- gated ion channel activity (GO:0005230), Biological Process: transport (GO:0006810), Cellular Component: membrane (GO:0016020)
$20(87)$	$15(178)$	$\mathbf{1 (2 0 2 3)}$	IPR000172: Glucose- methanol-choline oxidoreductase	Biological Process: electron transport (GO:0006118), Molecular Function: oxidoreductase activity (GO:0016491)
$20(88)$	$30(68)$	$22(210)$	IPR001251: Cellular retinaldehyde-binding/triple function, C-terminal	IPR004827: Basic-leucine
$20(89)$	$20(127)$	$50(78)$	IPR zipper (bZIP) transcription factor	Molecular Function: DNA binding (GO:0003677), Cellular Component: nucleus (GO:0005634), Biological Process: regulation of transcription, DNA-dependent (GO:0006355)
$20(90)$	$12(241)$	$\mathbf{8 9 (4 0)}$	IPR007125: Histone core	Molecular Function: DNA binding (GO:0003677)
$20(91)$	$15(196)$	$\mathbf{1 (2 6 6 4)}$	IPR007867: GMC oxidoreductase	Molecular Function: oxidoreductase activity, acting on CH-OH group of donors (GO:0016614), Molecular Function: FAD binding (GO:0050660)
$20(92)$	$17(156)$	$37(122)$	IPR012680: Laminin G, subdomain 2	IPR000449: Ubiquitin- associated
$19(93)$	$26(81)$	$34(131)$		

19 (94)	18 (133)	34 (133)	IPR000595: Cyclic nucleotide-binding	
19 (95)	28 (75)	17 (284)	IPR001509: NAD-dependent epimerase/dehydratase	Molecular Function: catalytic activity (GO:0003824), Biological Process: nucleotide-sugar metabolism (GO:0009225), Molecular Function: NAD binding (GO:0051287)
19 (96)	12 (229)	38 (115)	IPR001609: Myosin head, motor region	Molecular Function: motor activity (GO:0003774), Molecular Function: ATP binding (GO:0005524), Cellular Component: myosin (GO:0016459)
19 (97)	15 (186)	44 (99)	IPR001683: Phox-like	Biological Process: intracellular signaling cascade (GO:0007242)
19 (98)	23 (101)	37 (118)	IPR001828: Extracellular ligand-binding receptor	
19 (99)	32 (65)	27 (171)	IPR004843: Metallophosphoesterase	Molecular Function: hydrolase activity (GO:0016787)
19 (100)	17 (152)	68 (56)	IPR006652: Kelch repeat	
19 (101)	17 (153)	40 (112)	IPR006670: Cyclin	
18 (102)	34 (58)	32 (141)	IPR000301: CD9/CD37/CD63 antigen	Cellular Component: integral to membrane (GO:0016021)
18 (103)	16 (161)	49 (80)	IPR000536: Nuclear hormone receptor, ligand-binding	Molecular Function: transcription factor activity (GO:0003700), Molecular Function: steroid hormone receptor activity (GO:0003707), Cellular Component: nucleus (GO:0005634), Biological Process: regulation of transcription, DNA-dependent (GO:0006355)
18 (104)	24 (96)	48 (86)	IPR000859: CUB	

$\left.\begin{array}{|c|c|c|l|l|}\hline 18(105) & 25(90) & 20(236) & \begin{array}{l}\text { IPR001054: Adenylyl cyclase } \\ \text { class-3/4/guanylyl cyclase }\end{array} & \begin{array}{l}\text { Biological Process: intracellular } \\ \text { signaling cascade (GO:0007242), } \\ \text { Biological Process: cyclic nucleotide } \\ \text { biosynthesis (GO:0009190), Molecular } \\ \text { Function: phosphorus-oxygen lyase } \\ \text { activity (GO:0016849) }\end{array} \\ \hline 18(106) & 18(135) & 21(226) & \begin{array}{l}\text { IPR001163: Like-Sm } \\ \text { ribonucleoprotein, core }\end{array} & \begin{array}{l}\text { Cellular Component: nucleus } \\ \text { (GO:0005634), Cellular Component: } \\ \text { small nucleolar ribonucleoprotein } \\ \text { complex (GO:0005732), Biological } \\ \text { Process: mRNA processing }\end{array} \\ \text { (GO:0006397) }\end{array}\right\}$

17 (114)	17 (149)	21 (228)	IPR002917: GTP-binding protein, HSR1-related	
17 (115)	19 (131)	22 (218)	IPR006662: Thioredoxinrelated	Molecular Function: electron transporter activity (GO:0005489), Biological Process: electron transport (GO:0006118)
17 (116)	16 (177)	31 (151)	IPR012679: Laminin G, subdomain 1	
16 (117)	15 (179)	25 (177)	IPR000253: Forkheadassociated	
16 (118)	12 (225)	27 (169)	IPR000306: Zinc finger, FYVE-type	Molecular Function: zinc ion binding (GO:0008270)
16 (119)	17 (145)	31 (146)	IPR000330: SNF2-related	Molecular Function: DNA binding (GO:0003677), Molecular Function: ATP binding (GO:0005524)
16 (120)	15 (180)	86 (43)	IPR000372: Cysteine-rich flanking region, N -terminal	
16 (121)	16 (160)	20 (233)	IPR000467: D111/G-patch	Molecular Function: nucleic acid binding (GO:0003676), Cellular Component: intracellular (GO:0005622)
16 (122)	14 (201)	16 (295)	IPR000717: Proteasome component region PCI	
16 (123)	18 (134)	29 (162)	IPR000795: Protein synthesis factor, GTP-binding	Molecular Function: GTP binding (GO:0005525), Biological Process: protein biosynthesis (GO:0006412)
16 (124)	14 (206)	33 (140)	IPR004148: BAR	Molecular Function: protein binding (GO:0005515), Cellular Component: cytoplasm (GO:0005737)
16 (125)	18 (141)	27 (172)	IPR006594: Lissencephaly type-1-like homology motif	
15 (126)	40 (48)	24 (183)	IPR000073: Alpha/beta hydrolase fold	

$\left.\begin{array}{|c|c|c|l|l|}\hline 15(127) & 16(158) & 41(106) & \begin{array}{l}\text { IPR000242: Tyrosine specific } \\ \text { protein phosphatase }\end{array} & \begin{array}{l}\text { Molecular Function: protein tyrosine } \\ \text { phosphatase activity (GO:0004725), } \\ \text { Biological Process: protein amino acid } \\ \text { dephosphorylation (GO:0006470) }\end{array} \\ \hline 15(128) & 9(293) & \mathbf{9 (5 0 4)} & \begin{array}{l}\text { IPR000560: Histidine acid } \\ \text { phosphatase }\end{array} & \begin{array}{l}\text { Molecular Function: acid phosphatase } \\ \text { activity (GO:0003993) }\end{array} \\ \hline 15(129) & 28(74) & 27(170) & \begin{array}{l}\text { IPR000873: AMP-dependent } \\ \text { synthetase and ligase }\end{array} & \begin{array}{l}\text { Molecular Function: catalytic activity } \\ \text { (GO:0003824), Biological Process: } \\ \text { metabolism (GO:0008152) }\end{array} \\ \hline 15(130) & 22(105) & 18(263) & \begin{array}{l}\text { IPR001320: Ionotropic } \\ \text { glutamate receptor }\end{array} & \begin{array}{l}\text { Molecular Function: ionotropic } \\ \text { glutamate receptor activity } \\ \text { (GO:0004970), Molecular Function: } \\ \text { glutamate-gated ion channel activity } \\ \text { (GO:0005234), Cellular Component: } \\ \text { membrane (GO:0016020) }\end{array} \\ \hline 15(131) & 18(137) & 42(104) & \begin{array}{l}\text { IPR001766: Fork head } \\ \text { transcription factor }\end{array} & \begin{array}{l}\text { Molecular Function: transcription factor } \\ \text { activity (GO:0003700), Cellular } \\ \text { Component: nucleus (GO:0005634), }\end{array} \\ \hline 15(132) & 9(300) & 26(173) & \begin{array}{l}\text { Biological Process: regulation of }\end{array} \\ \hline \text { transcription, DNA-dependent } \\ \text { (GO:0006355) }\end{array}\right\}$

$15(136)$	$10(279)$	$13(377)$	IPR004273: Dynein heavy chain	Molecular Function: microtubule motor activity (GO:0003777), Biological Process: microtubule-based movement (GO:0007018), Cellular Component: dynein complex (GO:0030286)
$15(137)$	$15(192)$	$22(217)$	IPR004841: Amino acid permease-associated region	Biological Process: transport (GO:0006810), Cellular Component: membrane (GO:0016020)
$15(138)$	$13(222)$	$30(159)$	IPR006671: Cyclin, N- terminal	Biological Process: regulation of progression through cell cycle (GO:0000074)
$15(139)$	$10(289)$	$64(60)$	IPR008160: Collagen triple helix repeat	Cellular Component: cytoplasm (GO:0005737), Biological Process: phosphate transport (GO:0006817)
$14(140)$	$11(244)$	$36(123)$	IPR000159: RA	Biological Process: signal transduction (GO:0007165)
$14(141)$	$21(112)$	$21(221)$	IPR000175: Sodium:neurotransmitter symporter	Molecular Function: neurotransmitter:sodium symporter activity (GO:0005328), Cellular Component: integral to plasma membrane (GO:0005887), Biological
$14(142)$	$17(146)$	$\mathbf{5 (8 1 1)}$	IPR000412: ABC-2	Process: neurotransmitter transport (GO:0006836), Cellular Component:
membrane (GO:0016020)				

14 (143)	14 (200)	28 (167)	IPR000569: HECT	Molecular Function: ubiquitin-protein ligase activity (GO:0004842), Cellular Component: intracellular (GO:0005622), Biological Process: protein modification (GO:0006464), Biological Process: ubiquitin cycle (GO:0006512)
14 (144)	32 (61)	9 (505)	IPR000734: Lipase	Molecular Function: catalytic activity (GO:0003824), Biological Process: lipid metabolism (GO:0006629)
14 (145)	12 (232)	81 (49)	IPR002035: von Willebrand factor, type A	
14 (146)	20 (125)	7 (646)	IPR002076: GNS1/SUR4 membrane protein	Cellular Component: integral to membrane (GO:0016021)
14 (147)	22 (108)	40 (111)	IPR002350: Proteinase inhibitor I1, Kazal	
14 (148)	16 (171)	25 (182)	IPR004161: Elongation factor Tu, domain 2	Molecular Function: GTP binding (GO:0005525)
14 (149)	10 (285)	15 (327)	IPR006935: Type III restriction enzyme, res subunit	Molecular Function: ATP binding (GO:0005524)
14 (150)	14 (208)	18 (273)	IPR007502: Helicaseassociated region	Molecular Function: helicase activity (GO:0004386)
14 (151)	12 (242)	36 (127)	IPR008280: Tubulin/FtsZ, Cterminal	Molecular Function: GTPase activity (GO:0003924), Molecular Function: GTP binding (GO:0005525), Cellular Component: protein complex (GO:0043234), Biological Process: protein polymerization (GO:0051258)
14 (152)	14 (209)	37 (121)	IPR011616: bZIP transcription factor, bZIP_1	Molecular Function: DNA binding (GO:0003677), Cellular Component: nucleus (GO:0005634), Biological Process: regulation of transcription,

				DNA-dependent (GO:0006355)
13 (153)	16 (157)	30 (152)	IPR000014: PAS	Molecular Function: signal transducer activity (GO:0004871), Biological Process: signal transduction (GO:0007165)
13 (154)	22 (104)	23 (194)	IPR001140: ABC transporter, transmembrane region	Molecular Function: ATP binding (GO:0005524), Biological Process: transport (GO:0006810), Cellular Component: integral to membrane (GO:0016021), Molecular Function: ATPase activity, coupled to transmembrane movement of substances (GO:0042626)
13 (155)	26 (83)	19 (253)	IPR001353: 20S proteasome, A and B subunits	Molecular Function: threonine endopeptidase activity (GO:0004298), Cellular Component: proteasome core complex (sensu Eukaryota) (GO:0005839), Biological Process: ubiquitin-dependent protein catabolism (GO:0006511)
13 (156)	15 (185)	14 (345)	IPR001507: Endoglin/CD105 antigen	
13 (157)	12 (230)	25 (179)	IPR001610: PAC motif	Biological Process: regulation of transcription, DNA-dependent (GO:0006355), Biological Process: signal transduction (GO:0007165)
13 (158)	11 (249)	30 (156)	IPR002049: Laminin-type EGF-like	Molecular Function: structural molecule activity (GO:0005198)

13 (159)	15 (188)	37 (120)	IPR003595: Protein tyrosine phosphatase, catalytic region	Molecular Function: protein tyrosine phosphatase activity (GO:0004725)
13 (160)	54 (41)	2 (1694)	IPR004119: Protein of unknown function DUF227	Molecular Function: molecular function unknown (GO:0005554)
13 (161)	28 (77)	()	IPR004272: Odorant binding protein	Molecular Function: molecular function unknown (GO:0005554)
13 (162)	36 (54)	()	IPR006170: Pheromone/general odorant binding protein, $\mathrm{PBP} / \mathrm{GOBP}$	Molecular Function: odorant binding (GO:0005549), Biological Process: transport (GO:0006810)
13 (163)	13 (223)	29 (166)	IPR006689: ARF/SAR superfamily	Molecular Function: GTP binding (GO:0005525)
13 (164)	22 (110)	40 (113)	IPR011497: Protease inhibitor, Kazal-type	
13 (165)	19 (132)	50 (79)	IPR011705: BTB/Kelchassociated	
13 (166)	20 (130)	0	IPR012464: Protein of unknown function DUF1676	
12 (167)	12 (226)	41 (107)	IPR000340: Dual specificity protein phosphatase	Biological Process: protein amino acid dephosphorylation (GO:0006470), Molecular Function: protein tyrosine/serine/threonine phosphatase activity (GO:0008138)
12 (168)	11 (245)	19 (249)	IPR000403: Phosphatidylinositol 3- and 4kinase, catalytic	Molecular Function: phosphotransferase activity, alcohol group as acceptor (GO:0016773)
12 (169)	14 (199)	17 (276)	IPR000433: Zinc finger, ZZtype	Molecular Function: zinc ion binding (GO:0008270)
12 (170)	13 (210)	20 (237)	IPR001159: Double-stranded RNA binding	Molecular Function: double-stranded RNA binding (GO:0003725), Cellular Component: intracellular (GO:0005622)
12 (171)	16 (165)	12 (389)	IPR001199: Cytochrome b5	

$\left.\begin{array}{|c|c|c|l|l|}\hline 12(172) & 12(228) & 22(211) & \text { IPR001357: BRCT } & \begin{array}{l}\text { Cellular Component: intracellular } \\ (\text { GO:0005622) }\end{array} \\ \hline 12(173) & 14(204) & 22(214) & \begin{array}{l}\text { IPR001876: Zinc finger, } \\ \text { RanBP2-type }\end{array} & \\ \hline 12(174) & 10(271) & 18(266) & \begin{array}{l}\text { IPR002123: } \\ \text { Phospholipid/glycerol } \\ \text { acyltransferase }\end{array} & \begin{array}{l}\text { Biological Process: metabolism } \\ \text { (GO:0008152), Molecular Function: } \\ \text { acyltransferase activity (GO:0008415) }\end{array} \\ \hline 12(175) & 12(234) & 14(348) & \begin{array}{l}\text { IPR002225: 3-beta } \\ \text { hydroxysteroid } \\ \text { dehydrogenase/isomerase }\end{array} & \begin{array}{l}\text { Molecular Function: 3-beta-hydroxy- } \\ \text { delta5-steroid dehydrogenase activity } \\ \text { (GO:0003854), Biological Process: } \\ \text { steroid biosynthesis (GO:0006694) }\end{array} \\ \hline 12(176) & 16(169) & 18(267) & \begin{array}{l}\text { Molecular Function: amino acid- } \\ \text { polyamine transporter activity } \\ \text { (GO:0005279), Biological Process: } \\ \text { amino acid transport (GO:0006865), } \\ \text { Cellular Component: membrane } \\ \text { acid/polyamine transporter II } \\ \text { (GO:0016020) }\end{array} \\ \hline 12(177) & 12(239) & \mathbf{8 7 (4 1)} & \begin{array}{l}\text { IPR003877: SPla/RYanodine } \\ \text { receptor SPRY }\end{array} & \begin{array}{l}\text { IPR011704: ATPase } \\ \text { associated with various } \\ \text { cellular activities, AAA_5 }\end{array} \\ \hline 12(178) & 9(313) & 9(552) & \begin{array}{l}\text { Molecular Function: ATP binding } \\ \text { (GO:0005524), Molecular Function: } \\ \text { ATPase activity (GO:0016887) }\end{array} \\ \hline 11(179) & 14(198) & 23(191) & \begin{array}{l}\text { IPR000086: NUDIX } \\ \text { hydrolase }\end{array} & \begin{array}{l}\text { IPR000315: Zinc finger, B- } \\ \text { box }\end{array}\end{array} \begin{array}{l}\text { Cellular Component: intracellular } \\ \text { (GO:0005622), Molecular Function: zinc } \\ \text { ion binding (GO:0008270) }\end{array}\right\}$

11 (183)	20 (124)	30 (153)	IPR000953: Chromo	Cellular Component: chromatin (GO:0000785), Molecular Function: chromatin binding (GO:0003682), Cellular Component: nucleus (GO:0005634), Biological Process: chromatin assembly or disassembly (GO:0006333)
11 (184)	15 (181)	36 (124)	IPR001007: von Willebrand factor, type C	
11 (185)	21 (117)	22 (213)	IPR001594: Zinc finger, DHHC-type	Molecular Function: metal ion binding (GO:0046872)
11 (186)	15 (187)	18 (265)	IPR001932: Protein phosphatase 2C-like	Molecular Function: catalytic activity (GO:0003824)
11 (187)	35 (57)	14 (347)	IPR002213: UDP-glucuronosyl/UDPglucosyltransferase	Biological Process: metabolism (GO:0008152), Molecular Function: transferase activity, transferring hexosyl groups (GO:0016758)
11 (188)	12 (236)	51 (76)	IPR003131: $\mathrm{K}+$ channel tetramerisation	Molecular Function: voltage-gated potassium channel activity (GO:0005249), Biological Process: potassium ion transport (GO:0006813), Cellular Component: voltage-gated potassium channel complex (GO:0008076), Cellular Component: membrane (GO:0016020)
11 (189)	13 (217)	30 (158)	IPR003347: Transcription factor jumonji, jmjC	
11 (190)	10 (276)	24 (186)	IPR003577: Ras small GTPase, Ras type	Molecular Function: GTP binding (GO:0005525), Biological Process: small GTPase mediated signal transduction (GO:0007264)

$11(191)$	$12(237)$	$22(215)$	IPR003604: Zinc finger, U1- type	Molecular Function: nucleic acid binding (GO:0003676), Cellular Component: nucleus (GO:0005634), Molecular Function: zinc ion binding (GO:0008270)
$11(192)$	$11(252)$	$45(96)$	IPR003659: Plexin/semaphorin/integrin	Biological Process: development (GO:0007275)
$11(193)$	$7(385)$	$10(480)$	IPR003958: Transcription factor CBF/NF-Y/archaeal histone	Molecular Function: DNA binding (GO:0003677)
$11(194)$	$11(255)$	$10(485)$	IPR004344: Tubulin-tyrosine ligase	Molecular Function: tubulin-tyrosine ligase activity (GO:0004835), Biological Process: protein modification (GO:0006464)
$11(195)$	$8(349)$	$23(205)$	IPR008250: E1-E2 ATPase- associated region	Molecular Function: ATP binding (GO:0005524), Cellular Component: membrane (GO:0016020), Molecular Function: hydrolase activity, acting on acid anhydrides, catalyzing transmembrane movement of substances (GO:0016820)
$11(196)$	$13(224)$	$17(293)$	IPR011709: Protein of unknown function DUF1605	Molecular Function: ATP binding (GO:0005524), Molecular Function:
ATP-dependent helicase activity				
(GO:0008026)				

$10(200)$	$22(102)$	$45(92)$	IPR000832: GPCR, family 2, secretin-like	Molecular Function: G-protein coupled receptor activity (GO:0004930), Cellular Component: membrane (GO:0016020)
$10(201)$	$24(95)$	$22(208)$	IPR000834: Peptidase M14, carboxypeptidase A	Molecular Function: carboxypeptidase A activity (GO:0004182), Biological Process: proteolysis and peptidolysis (GO:0006508)
$10(202)$	$15(183)$	$22(209)$	IPR001148: Carbonic anhydrase, eukaryotic	Molecular Function: carbonate dehydratase activity (GO:0004089), Biological Process: one-carbon compound metabolism (GO:0006730), Molecular Function: zinc ion binding (GO:0008270)
$10(203)$	$16(164)$	$23(195)$	IPR001173: Glycosyl transferase, family 2	IPR001223: Glycoside
$10(204)$	$16(166)$	$7(634)$	hydrolase, family 18	Molecular Function: hydrolase activity, hydrolyzing O-glycosyl compounds (GO:0004553), Biological Process: carbohydrate metabolism (GO:0005975)
$10(205)$	$\mathbf{3 5 (5 5)}$	$\mathbf{8 1 (4 7)}$	IPR001304: C-type lectin	Molecular Function: sugar binding (GO:0005529)
$10(206)$	$6(431)$	$40(110)$	IPR001590: Peptidase M12B, ADAM/reprolysin	Molecular Function: metalloendopeptidase activity (GO:0004222), Biological Process: proteolysis and peptidolysis (GO:0006508)
$10(207)$	$14(203)$	$17(286)$	IPR001753: Enoyl-CoA hydratase/isomerase	Molecular Function: catalytic activity (GO:0003824), Biological Process: metabolism (GO:0008152)

10 (208)	22 (107)	13 (370)	IPR001930: Peptidase M1, membrane alanine aminopeptidase	Molecular Function: membrane alanyl aminopeptidase activity (GO:0004179), Biological Process: proteolysis and peptidolysis (GO:0006508)
10 (209)	7 (374)	20 (240)	IPR002085: Alcohol dehydrogenase superfamily, zinc-containing	Molecular Function: zinc ion binding (GO:0008270), Molecular Function: oxidoreductase activity (GO:0016491)
10 (210)	10 (272)	10 (470)	IPR002129: Pyridoxaldependent decarboxylase	Biological Process: amino acid metabolism (GO:0006520), Molecular Function: carboxy-lyase activity (GO:0016831)
10 (211)	13 (215)	17 (289)	IPR002423: Chaperonin Cpn60/TCP-1	Molecular Function: protein binding (GO:0005515), Molecular Function: ATP binding (GO:0005524), Biological Process: cellular protein metabolism (GO:0044267)
10 (212)	13 (216)	26 (174)	IPR002999: Tudor	Molecular Function: nucleic acid binding (GO:0003676)
10 (213)	10 (274)	12 (395)	IPR003029: RNA binding S1	Molecular Function: RNA binding (GO:0003723)
10 (214)	10 (277)	23 (202)	IPR003607: Metal-dependent phosphohydrolase, HD region	Molecular Function: catalytic activity (GO:0003824)
10 (215)	10 (280)	15 (323)	IPR004839: Aminotransferase, class I and II	Biological Process: biosynthesis (GO:0009058), Molecular Function: transferase activity, transferring nitrogenous groups (GO:0016769)
10 (216)	12 (240)	42 (105)	IPR005135: Endonuclease/exonuclease/ph osphatase	
10 (217)	11 (256)	31 (149)	IPR006020: Phosphotyrosine interaction region	

$10(218)$	$29(73)$	0	IPR006625: Insect pheromone/odorant binding protein PhBP	
$10(219)$	$10(284)$	$22(219)$	IPR006688: ADP-ribosylation factor	Molecular Function: GTP binding (GO:0005525)
$9(220)$	$10(265)$	$13(364)$	IPR000555: Mov34/MPN/PAD-1	
$9(221)$	$8(320)$	$10(447)$	IPR000594: UBA/THIF-type NAD/FAD binding fold	Molecular Function: catalytic activity (GO:0003824)
$9(222)$	$12(227)$	$21(223)$	IPR000727: Target SNARE coiled-coil region	
$9(223)$	$7(363)$	$32(142)$	IPR001164: Arf GTPase activating protein	Biological Process: regulation of GTPase activity (GO:0043087)
$9(224)$	$6(427)$	$11(414)$	IPR001258: NHL repeat	Molecular Function: oxidoreductase activity (GO:0016491)
$9(225)$	$11(248)$	$22(212)$	IPR001395: Aldo/keto reductase	IPR001496: SOCS protein, C- terminal
$9(226)$	$8(327)$	$11(417)$	Biological Process: intracellular signaling cascade (GO:0007242)	
$9(227)$	$16(167)$	IPR001734: Na+/solute symporter	Molecular Function: transporter activity (GO:0005215), Biological Process: transport (GO:0006810), Cellular Component: membrane (GO:0016020)	
$9(228)$	$10(269)$	$10(467)$	IPR002007: Animal haem peroxidase IPR002068: Heat shock protein Hsp20	Molecular Function: peroxidase activity (GO:0004601)
$9(229)$	$10(270)$	$8(577)$	IPR002086: Aldehyde dehydrogenase	Biological Process: metabolism (GO:0008152), Molecular Function: oxidoreductase activity (GO:0016491)
$9(230)$	$11(250)$	$19(255)$	Biological Process: cell adhesion (GO:0007155), Cellular Component: membrane (GO:0016020)	
$9(231)$	$12(233)$	IPR002159: CD36 antigen		IPR

9 (232)	8 (331)	8 (578)	IPR002300: Aminoacyl-tRNA synthetase, class Ia	Molecular Function: tRNA ligase activity (GO:0004812), Molecular Function: ATP binding (GO:0005524), Biological Process: tRNA aminoacylation for protein translation (GO:0006418)
9 (233)	9 (301)	11 (420)	IPR002314: tRNA synthetase, class II (G, H, P and S)	Molecular Function: tRNA ligase activity (GO:0004812), Molecular Function: ATP binding (GO:0005524), Biological Process: tRNA aminoacylation for protein translation (GO:0006418)
9 (234)	4 (654)	13 (375)	IPR003616: SET-related region	
9 (235)	8 (338)	20 (244)	IPR004012: RUN	
9 (236)	11 (254)	10 (484)	IPR004274: NLI interacting factor	
9 (237)	10 (282)	8 (602)	IPR005804: Fatty acid desaturase	Molecular Function: oxidoreductase activity (GO:0016491)
9 (238)	17 (150)	21 (230)	IPR006076: FAD dependent oxidoreductase	Biological Process: electron transport (GO:0006118), Molecular Function: oxidoreductase activity (GO:0016491)
9 (239)	6 (472)	14 (357)	IPR006560: AWS	
9 (240)	51 (42)	5 (915)	IPR006578: MADF	
9 (241)	9 (310)	26 (176)	IPR008145: Guanylate kinase/L-type calcium channel region	
9 (242)	15 (197)	12 (401)	IPR008191: Maternal tudor protein	

$9(243)$	$9(312)$	$10(494)$	IPR011547: Sulphate transporter	Molecular Function: transporter activity (GO:0005215), Biological Process: transport (GO:0006810), Cellular Component: integral to membrane (GO:0016021)
$9(244)$	$16(176)$	$7(693)$	IPR011583: Chitinase II	Molecular Function: chitinase activity (GO:0004568), Biological Process: chitin catabolism (GO:0006032)
$8(245)$	$3(726)$	$6(699)$	IPR000092: Polyprenyl synthetase	Biological Process: isoprenoid biosynthesis (GO:0008299)
$8(246)$	$6(413)$	$24(184)$	IPR000413: Integrins alpha chain	Biological Process: cell adhesion (GO:0007155), Biological Process: cell- matrix adhesion (GO:0007160), Cellular Component: integrin complex
(GO:0008305)				

8 (251)	9 (296)	10 (454)	IPR000994: Peptidase M24	Biological Process: proteolysis and peptidolysis (GO:0006508), Molecular Function: metalloexopeptidase activity (GO:0008235)
8 (252)	11 (247)	11 (413)	IPR001107: Band 7 protein	
8 (253)	8 (323)	14 (341)	IPR001206: Diacylglycerol kinase, catalytic region	Molecular Function: diacylglycerol kinase activity (GO:0004143), Biological Process: protein kinase C activation (GO:0007205)
8 (254)	7 (364)	8 (567)	IPR001208: MCM	Molecular Function: DNA binding (GO:0003677), Molecular Function: ATP binding (GO:0005524), Biological Process: DNA replication initiation (GO:0006270), Molecular Function: DNA-dependent ATPase activity (GO:0008094)
8 (255)	6 (425)	8 (568)	IPR001236: Lactate/malate dehydrogenase	Biological Process: tricarboxylic acid cycle intermediate metabolism (GO:0006100), Molecular Function: oxidoreductase activity (GO:0016491)
8 (256)	15 (184)	12 (390)	IPR001494: Importin-beta, Nterminal	Biological Process: protein-nucleus import, docking (GO:0000059), Cellular Component: nucleus (GO:0005634), Cellular Component: nuclear pore (GO:0005643), Cellular Component: cytoplasm (GO:0005737), Molecular Function: protein transporter activity (GO:0008565)

$8(257)$	$7(370)$	$12(391)$	IPR001529: DNA-directed RNA polymerase, M/15 kDa subunit	Molecular Function: DNA binding (GO:0003677), Molecular Function: DNA-directed RNA polymerase activity (GO:0003899), Biological Process: transcription (GO:0006350)
$8(258)$	$6(436)$	$20(238)$	IPR001763: Rhodanese-like	
$8(259)$	$6(441)$	$20(239)$	IPR002073: 3'5'-cyclic nucleotide phosphodiesterase	Molecular Function: 3',5'-cyclic- nucleotide phosphodiesterase activity (GO:0004114), Biological Process: signal transduction (GO:0007165)
$8(260)$	$8(330)$	$29(164)$	IPR002165: Plexin	Molecular Function: receptor activity (GO:0004872), Cellular Component: membrane (GO:0016020)
$8(261)$	$4(643)$	$10(474)$	IPR002919: Protease inhibitor I8, cysteine-rich trypsin inhibitor-like	IPR003392: Patched
$8(262)$	$5(534)$	$6(477)$	IPR	Molecular Function: hedgehog receptor activity (GO:0008158), Cellular Component: membrane (GO:0016020)
$8(263)$	$6(456)$	$20(243)$	IPR003594: ATP-binding region, ATPase-like	Molecular Function: ATP binding (GO:0005524), Cellular Component: chromosome (GO:0005694), Biological Process: chromosome organization and biogenesis (GO:0051276)
$8(383)$	Molecular Function: ATP binding (GO:0005524)			
$8(265)$	$9(305)$	IPR003395: SMC protein, terminal	Cellular Component: membrane (GO:0016020), Biological Process: metal ion transport (GO:0030001), Molecular Function: metal ion transporter activity (GO:0046873)	

8 (266)	8 (337)	18 (269)	IPR003903: Ubiquitin interacting motif	
8 (267)	39 (51)	23 (203)	IPR004045: Glutathione Stransferase, N-terminal	
8 (268)	8 (344)	18 (271)	IPR005824: KOW	
8 (269)	7 (393)	13 (380)	IPR006055: Exonuclease	Molecular Function: exonuclease activity (GO:0004527), Cellular Component: intracellular (GO:0005622)
8 (270)	10 (283)	11 (434)	IPR006090: Acyl-CoA dehydrogenase, C-terminal	Biological Process: electron transport (GO:0006118), Molecular Function: oxidoreductase activity (GO:0016491)
8 (271)	13 (219)	15 (324)	IPR006091: Acyl-CoA dehydrogenase, central region	Molecular Function: acyl-CoA dehydrogenase activity (GO:0003995), Biological Process: electron transport (GO:0006118)
8 (272)	6 (471)	18 (272)	IPR006212: Furin-like repeat	
8 (273)	9 (307)	15 (325)	IPR006553: Leucine-rich repeat, cysteine-containing subtype	
8 (274)	9 (308)	11 (437)	IPR006575: RWD	
8 (275)	20 (129)	1 (2460)	IPR006631: Protein of unknown function DM4/12	
8 (276)	7 (397)	7 (687)	IPR007863: Peptidase M16, C-terminal	
8 (277)	18 (142)	7 (689)	IPR008753: Peptidase M13	Biological Process: proteolysis and peptidolysis (GO:0006508), Molecular Function: metallopeptidase activity (GO:0008237)
8 (278)	17 (155)	9 (551)	IPR011022: Arrestin, Cterminal	

7 (279)	10 (261)	15 (303)	IPR000033: Low-density lipoprotein receptor, YWTD repeat	Cellular Component: membrane (GO:0016020)
7 (280)	5 (485)	7 (619)	IPR000061: SWAP/Surp	Molecular Function: RNA binding (GO:0003723), Biological Process: RNA processing (GO:0006396)
7 (281)	6 (406)	9 (497)	IPR000089: Biotin/lipoyl attachment	
7 (282)	29 (70)	34 (130)	IPR000215: Proteinase inhibitor I4, serpin	Molecular Function: serine-type endopeptidase inhibitor activity (GO:0004867)
7 (283)	5 (491)	21 (222)	IPR000421: Coagulation factor $5 / 8$ type, C-terminal	Biological Process: cell adhesion (GO:0007155)
7 (284)	8 (318)	33 (136)	IPR000488: Death	Molecular Function: protein binding (GO:0005515), Biological Process: signal transduction (GO:0007165)
7 (285)	6 (416)	5 (817)	IPR000640: Elongation factor G, C-terminal	Molecular Function: GTP binding (GO:0005525)
7 (286)	5 (494)	17 (277)	IPR000644: CBS	
7 (287)	6 (417)	12 (387)	IPR000679: Zinc finger, GATA-type	Molecular Function: transcription factor activity (GO:0003700), Cellular Component: nucleus (GO:0005634), Biological Process: regulation of transcription, DNA-dependent (GO:0006355)
7 (288)	9 (294)	5 (821)	IPR000760: Inositol monophosphatase	Molecular Function: inositol or phosphatidylinositol phosphatase activity (GO:0004437)
7 (289)	10 (267)	31 (148)	IPR000863: Sulfotransferase	Molecular Function: sulfotransferase activity (GO:0008146)
7 (290)	9 (295)	6 (711)	IPR000866: Alkyl hydroperoxide reductase/ Thiol specific antioxidant/	

			Mal allergen	
7 (291)	7 (359)	9 (509)	IPR000938: CAP-Gly	
7 (292)	6 (421)	10 (456)	IPR001025: Bromo adjacent region	Molecular Function: DNA binding (GO:0003677)
7 (293)	5 (504)	18 (261)	IPR001060: Cdc15/Fes/CIP4	
7 (294)	6 (423)	18 (262)	IPR001093: IMP dehydrogenase/GMP reductase	Molecular Function: catalytic activity (GO:0003824)
7 (295)	8 (322)	19 (252)	IPR001179: Peptidylprolyl isomerase, FKBP-type	Biological Process: protein folding (GO:0006457)
7 (296)	6 (426)	7 (635)	IPR001247: 3^{\prime} exoribonuclease	Molecular Function: 3'-5'exoribonuclease activity (GO:0000175), Molecular Function: RNA binding (GO:0003723), Biological Process: RNA processing (GO:0006396)
7 (297)	7 (368)	9 (517)	IPR001375: Peptidase S9, prolyl oligopeptidase active site region	Biological Process: proteolysis and peptidolysis (GO:0006508), Molecular Function: serine-type peptidase activity (GO:0008236)
7 (298)	9 (299)	9 (520)	IPR001523: Paired box protein, N-terminal	Cellular Component: nucleus (GO:0005634), Biological Process: development (GO:0007275)
7 (299)	6 (433)	13 (369)	IPR001606: AT-rich interaction region	Molecular Function: DNA binding (GO:0003677), Cellular Component: intracellular (GO:0005622)
7 (300)	7 (372)	36 (125)	IPR001839: Transforming growth factor beta	Molecular Function: growth factor activity (GO:0008083)

7 (301)	25 (91)	8 (575)	IPR001873: Na+ channel, amiloride-sensitive	Molecular Function: sodium channel activity (GO:0005272), Biological Process: sodium ion transport (GO:0006814), Cellular Component: membrane (GO:0016020)
7 (302)	8 (329)	29 (163)	IPR001895: Guaninenucleotide dissociation stimulator CDC25	Molecular Function: guanyl-nucleotide exchange factor activity (GO:0005085), Biological Process: intracellular signaling cascade (GO:0007242)
7 (303)	2 (1023)	7 (644)	IPR001991: Sodium:dicarboxylate symporter	Biological Process: dicarboxylic acid transport (GO:0006835), Cellular Component: membrane (GO:0016020), Molecular Function: sodium:dicarboxylate symporter activity (GO:0017153)
7 (304)	7 (376)	13 (371)	IPR002553: Adaptin, Nterminal	
7 (305)	10 (273)	30 (157)	IPR002909: Cell surface receptor IPT/TIG	
7 (306)	7 (379)	9 (531)	IPR003014: N/apple PAN	
7 (307)	5 (531)	19 (256)	IPR003034: DNA-binding SAP	Molecular Function: DNA binding (GO:0003677)
7 (308)	7 (380)	8 (588)	IPR003107: RNA-processing protein, HAT helix	Cellular Component: intracellular (GO:0005622), Biological Process: RNA processing (GO:0006396)
7 (309)	8 (335)	15 (321)	IPR003409: MORN motif	
7 (310)	6 (457)	23 (201)	IPR003578: Ras small GTPase, Rho type	Molecular Function: GTP binding (GO:0005525), Biological Process: small GTPase mediated signal transduction (GO:0007264)
7 (311)	6 (458)	13 (374)	IPR003603: Leucine-richassociated	

$7(312)$	$8(339)$	$10(482)$	IPR004156: Organic anion transporter polypeptide OATP	Molecular Function: transporter activity (GO:0005215), Biological Process: transport (GO:0006810), Cellular Component: membrane (GO:0016020)
$7(313)$	$7(388)$	$18(270)$	IPR004160: Elongation factor Tu, C-terminal	Molecular Function: GTP binding (GO:0005525)
$7(314)$	$15(191)$	$\mathbf{1 (2 3 2 9)}$	IPR004262: Male sterility protein	
$7(315)$	$7(390)$	$11(430)$	IPR004365: nucleic acid binding, OB-fold, tRNA/helicase-type	Molecular Function: nucleic acid binding (GO:0003676)
$7(316)$	$8(340)$	$9(539)$	IPR004837: Sodium/calcium exchanger membrane region	Cellular Component: integral to membrane (GO:0016021)
$7(317)$	$8(341)$	$\mathbf{3 (1 3 1 8)}$	IPR005018: DOMON	Molecular Function: dopamine beta- monooxygenase activity (GO:0004500), Biological Process: catecholamine metabolism (GO:0006584)
$7(318)$	$21(119)$	$17(291)$	IPR005123: 2OG-Fe(II) oxygenase	IPR005475: Transketolase, central region
$7(319)$	$6(464)$	$8(600)$		Molecular Function: signal transducer activity (GO:0004871), Cellular Component: extracellular region (GO:0005576), Biological Process: frizzled-2 signaling pathway (GO:0007223), Biological Process: development (GO:0007275)
$7(320)$	$7(392)$	$19(258)$	IPR005817: Wnt superfamily	
$7(321)$	$14(207)$	$7(679)$	IPR006047: Alpha amylase, catalytic region	Molecular Function: alpha-amylase activity (GO:0004556), Biological Process: carbohydrate metabolism

				(GO:0005975)
$7(322)$	$17(151)$	$14(355)$	IPR006186: Serine/threonine- specific protein phosphatase and bis(5-nucleosyl)- tetraphosphatase	Molecular Function: hydrolase activity (GO:0016787)
$7(323)$	$11(257)$	$10(487)$	IPR006569: Regulation of nuclear pre-mRNA protein	
$7(324)$	$8(345)$	$8(603)$	IPR006595: CTLH, C- terminal to LisH motif	
$7(325)$	$6(473)$	$11(439)$	IPR006612: Zinc finger, C2CH-type	Molecular Function: nucleic acid binding (GO:0003676)
$7(326)$	$9(309)$	$\mathbf{1 (2 6 7 0)}$	IPR007889: Helix-turn-helix, Psq	Molecular Function: DNA binding (GO:0003677), Cellular Component: nucleus (GO:0005634)
$7(327)$	$7(398)$	$20(246)$	IPR008144: Guanylate kinase	
$7(328)$	$5(566)$	$15(328)$	IPR008197: Whey acidic protein, core region	IPR011021: Arrestin, N- terminal
$7(329)$	$17(154)$	$9(550)$	IPR000209: Peptidase S8 and S53, subtilisin, kexin, sedolisin	Molecular Function: subtilase activity (GO:0004289), Biological Process: proteolysis and peptidolysis (GO:0006508)
$6(330)$	$5(486)$	$10(445)$	Biological Process: intracellular protein transport (GO:0006886), Molecular	
Function: protein carrier activity				
(GO:0008320), Cellular Component:				
membrane (GO:0016020)				

6 (332)	7 (354)	15 (306)	IPR000425: Major intrinsic protein	Molecular Function: transporter activity (GO:0005215), Biological Process: transport (GO:0006810), Cellular Component: membrane (GO:0016020)
6 (333)	7 (356)	7 (626)	IPR000577: Carbohydrate kinase, FGGY	Biological Process: carbohydrate metabolism (GO:0005975)
6 (334)	5 (495)	19 (250)	IPR000651: Guanine nucleotide exchange factor for Ras-like GTPases, N-terminal	Molecular Function: guanyl-nucleotide exchange factor activity (GO:0005085), Biological Process: small GTPase mediated signal transduction (GO:0007264)
6 (335)	11 (246)	15 (309)	IPR000668: Peptidase C1A, papain	Biological Process: proteolysis and peptidolysis (GO:0006508), Molecular Function: cysteine-type peptidase activity (GO:0008234)
6 (336)	14 (202)	24 (185)	IPR000772: Ricin B lectin	
6 (337)	4 (596)	8 (561)	IPR000850: Adenylate kinase	Molecular Function: ATP binding (GO:0005524), Biological Process: nucleobase, nucleoside, nucleotide and nucleic acid metabolism (GO:0006139), Molecular Function: nucleotide kinase activity (GO:0019201)
6 (338)	6 (419)	16 (296)	IPR000904: SEC7-like	
6 (339)	4 (598)	15 (310)	IPR000909: Phosphatidylinositol-specific phospholipase C, X region	Molecular Function: phospholipase C activity (GO:0004629), Biological Process: signal transduction (GO:0007165), Biological Process: intracellular signaling cascade (GO:0007242)
6 (340)	9 (297)	14 (337)	IPR001012: UBX	

6 (341)	6 (420)	6 (713)	IPR001017: Dehydrogenase, E1 component	Biological Process: metabolism (GO:0008152), Molecular Function: oxidoreductase activity, acting on the aldehyde or oxo group of donors, disulfide as acceptor (GO:0016624)
6 (342)	7 (361)	16 (297)	IPR001019: Guanine nucleotide binding protein (Gprotein), alpha subunit	Molecular Function: signal transducer activity (GO:0004871), Biological Process: G-protein coupled receptor protein signaling pathway (GO:0007186), Molecular Function: guanyl nucleotide binding (GO:0019001)
6 (343)	15 (182)	11 (412)	IPR001023: Heat shock protein Hsp70	Molecular Function: ATP binding (GO:0005524)
6 (344)	2 (983)	6 (715)	IPR001087: Lipolytic enzyme, G-D-S-L	Biological Process: lipid metabolism (GO:0006629), Molecular Function: hydrolase activity, acting on ester bonds (GO:0016788)
6 (345)	8 (324)	10 (459)	IPR001279: Beta-lactamaselike	
6 (346)	8 (325)	8 (571)	IPR001327: FAD-dependent pyridine nucleotide-disulphide oxidoreductase	Biological Process: electron transport (GO:0006118), Molecular Function: disulfide oxidoreductase activity (GO:0015036)
6 (347)	7 (366)	14 (344)	IPR001345: Phosphoglycerate/bisphospho glycerate mutase	Molecular Function: catalytic activity (GO:0003824), Biological Process: metabolism (GO:0008152)
6 (348)	7 (367)	9 (515)	IPR001373: Cullin	Biological Process: cell cycle (GO:0007049)
6 (349)	5 (507)	9 (516)	IPR001374: Single-stranded nucleic acid binding R3H	Molecular Function: nucleic acid binding (GO:0003676)

\(\left.$$
\begin{array}{|c|c|c|l|l|}\hline 6(350) & 6(429) & 13(368) & \begin{array}{l}\text { IPR001433: Oxidoreductase } \\
\text { FAD/NAD(P)-binding }\end{array} & \begin{array}{l}\text { Biological Process: electron transport } \\
\text { (GO:0006118), Molecular Function: } \\
\text { oxidoreductase activity (GO:0016491) }\end{array} \\
\hline 6(351) & 5(511) & 5(829) & \begin{array}{l}\text { IPR001451: Bacterial } \\
\text { transferase hexapeptide repeat }\end{array} & \\
\hline 6(352) & 4(619) & 3(1222) & \begin{array}{l}\text { IPR001540: Glycoside } \\
\text { hydrolase, family 20 }\end{array} & \begin{array}{l}\text { Molecular Function: beta-N- } \\
\text { acetylhexosaminidase activity } \\
\text { (GO:0004563), Biological Process: } \\
\text { carbohydrate metabolism (GO:0005975) }\end{array} \\
\hline 6(353) & 8(328) & 17(285) & \begin{array}{l}\text { IPR001699: Transcription } \\
\text { factor, T-box }\end{array} & \begin{array}{l}\text { Molecular Function: transcription factor } \\
\text { activity (GO:0003700), Cellular } \\
\text { Component: nucleus (GO:0005634), } \\
\text { Biological Process: regulation of } \\
\text { transcription, DNA-dependent } \\
\text { (GO:0006355) }\end{array} \\
\hline 6(354) & 3(769) & 14(346) & \begin{array}{l}\text { IPR001711: } \\
\text { Phosphatidylinositol-specific } \\
\text { phospholipase C, Y domain }\end{array} & \begin{array}{l}\text { Molecular Function: phosphoinositide } \\
\text { phospholipase C activity (GO:0004435), } \\
\text { Biological Process: lipid metabolism } \\
\text { (GO:0006629), Biological Process: } \\
\text { signal transduction (GO:0007165), }\end{array}
$$

\hline Biological Process: intracellular

signaling cascade (GO:0007242)\end{array}\right]\)| Biological Process: rRNA modification |
| :--- |
| (GO:0000154), Molecular Function: |
| rRNA (adenine-N6,N6-)- |
| dimethyltransferase activity |
| (GO:0000179), Molecular Function: |
| rRNA methyltransferase activity |
| (GO:0008649) |

			factor, type D	
6 (358)	5 (518)	15 (315)	IPR001936: Ras GTPaseactivating protein	
6 (359)	2 (1026)	3 (1240)	IPR002015: Proteasome/cyclosome, regulatory subunit	Biological Process: regulation of progression through cell cycle (GO:0000074)
6 (360)	7 (375)	9 (526)	IPR002524: Cation efflux protein	Biological Process: cation transport (GO:0006812), Molecular Function: cation transporter activity (GO:0008324), Cellular Component: membrane (GO:0016020)
6 (361)	9 (302)	13 (372)	IPR002659: Glycosyl transferase, family 31	Biological Process: protein amino acid glycosylation (GO:0006486), Molecular Function: galactosyltransferase activity (GO:0008378), Cellular Component: membrane (GO:0016020)
6 (362)	6 (448)	5 (849)	IPR002877: Ribosomal RNA methyltransferase RrmJ/FtsJ	
6 (363)	18 (140)	7 (654)	IPR002933: Peptidase M20	Biological Process: proteolysis and peptidolysis (GO:0006508), Molecular Function: metallopeptidase activity (GO:0008237)
6 (364)	8 (333)	7 (655)	IPR002937: Amine oxidase	Biological Process: electron transport (GO:0006118), Molecular Function: oxidoreductase activity (GO:0016491)

$\left.\begin{array}{|c|c|c|c|l|}\hline 6(365) & 5(530) & 8(585) & \begin{array}{l}\text { IPR003000: Silent information } \\ \text { regulator protein Sir2 }\end{array} & \begin{array}{l}\text { Molecular Function: DNA binding } \\ \text { (GO:0003677), Cellular Component: } \\ \text { chromatin silencing complex } \\ \text { (GO:0005677), Biological Process: } \\ \text { chromatin silencing (GO:0006342), } \\ \text { Biological Process: regulation of }\end{array} \\ \text { transcription, DNA-dependent } \\ \text { (GO:0006355) }\end{array}\right]$
$\left.\begin{array}{|c|c|c|l|l|}\hline 6(372) & 5(537) & 7(666) & \text { IPR003613: U box } & \begin{array}{l}\text { Cellular Component: ubiquitin ligase } \\ \text { complex (GO:0000151), Molecular } \\ \text { Function: ubiquitin-protein ligase } \\ \text { activity (GO:0004842), Biological } \\ \text { Process: protein ubiquitination } \\ \text { (GO:0016567) }\end{array} \\ \hline 6(373) & 12(238) & 11(428) & \text { IPR003650: Orange } & \begin{array}{l}\text { Molecular Function: DNA binding } \\ \text { (GO:0003677), Biological Process: } \\ \text { regulation of transcription, DNA- } \\ \text { dependent (GO:0006355) }\end{array} \\ \hline 6(374) & 10(278) & 10(479) & \begin{array}{l}\text { IPR003890: Initiation factor } \\ \text { eIF-4 gamma, middle }\end{array} & \begin{array}{l}\text { Molecular Function: RNA binding } \\ \text { (GO:0003723) }\end{array} \\ \hline 6(375) & 4(656) & 14(350) & \begin{array}{l}\text { IPR003954: RNA recognition, } \\ \text { region 1 }\end{array} & \begin{array}{l}\text { Molecular Function: nucleic acid binding } \\ \text { (GO:0003676) }\end{array} \\ \hline 6(376) & 5(541) & 16(300) & \begin{array}{l}\text { IPR004014: Cation } \\ \text { transporting ATPase, N- } \\ \text { terminal }\end{array} & \begin{array}{l}\text { Biological Process: cation transport } \\ \text { (GO:0006812), Molecular Function: } \\ \text { ATPase activity, coupled to }\end{array} \\ \text { transmembrane movement of ions, } \\ \text { phosphorylative mechanism } \\ \text { (GO:0015662), Cellular Component: } \\ \text { membrane (GO:0016020) }\end{array}\right]$

$6(380)$	$6(462)$	$14(351)$	IPR004367: Cyclin, C- terminal	Biological Process: regulation of progression through cell cycle (GO:0000074), Cellular Component: nucleus (GO:0005634)
$6(381)$	$8(342)$	$9(540)$	IPR005024: Snf7	Molecular Function: molecular function unknown (GO:0005554)
$6(382)$	$5(553)$	$5(899)$	IPR005814: Aminotransferase class-III	Molecular Function: transaminase activity (GO:0008483), Molecular Function: pyridoxal phosphate binding (GO:0030170)
$6(383)$	$6(467)$	$14(354)$	IPR006068: Cation transporting ATPase, C- terminal	Biological Process: cation transport (GO:0006812), Molecular Function: ATPase activity, coupled to transmembrane movement of ions, phosphorylative mechanism (GO:0015662), Cellular Component: membrane (GO:0016020)
$6(384)$	$6(468)$	$9(542)$	IPR006092: Acyl-CoA dehydrogenase, N-terminal	Molecular Function: acyl-CoA dehydrogenase activity (GO:0003995), Biological Process: electron transport (GO:0006118)
$6(385)$	$3(857)$	$5(905)$	IPR006204: GHMP kinase	Molecular Function: ATP binding (GO:0005524), Molecular Function: kinase activity (GO:0016301), Biological Process: phosphorylation (GO:0016310)

$\left.\begin{array}{|c|c|c|l|l|}\hline 6(386) & 24(99) & 15(326) & & \begin{array}{l}\text { Molecular Function: oxidoreductase } \\ \text { activity, acting on paired donors, with } \\ \text { incorporation or reduction of molecular } \\ \text { oxygen, 2-oxoglutarate as one donor, } \\ \text { and incorporation of one atom each of } \\ \text { hydroxylase, alpha subunit }\end{array} \\ \hline \text { oxygen into both donors (GO:0016706), } \\ \text { Biological Process: protein metabolism } \\ \text { (GO:0019538) }\end{array}\right]$
\(\left.\left.$$
\begin{array}{|c|c|c|l|l|}\hline 5(395) & 8(314) & 23(189) & \begin{array}{l}\text { IPR000024: Frizzled CRD } \\
\text { region }\end{array} & \\
\hline 5(396) & 4(576) & 7(618) & \text { IPR000034: Laminin B } & \\
\hline 5(397) & 6(407) & 14(329) & \begin{array}{l}\text { IPR000095: PAK-box/P21- } \\
\text { Rho-binding }\end{array} & \\
\hline 5(398) & 3(731) & 13(363) & \text { IPR000156: RanBP1 } & \\
\hline 5(399) & 4(578) & 22(206) & \text { IPR000164: Histone H3 } & \begin{array}{l}\text { Cellular Component: nucleosome } \\
\text { (GO:0000786), Molecular Function: } \\
\text { DNA binding (GO:0003677), Cellular } \\
\text { Component: nucleus (GO:0005634), } \\
\text { Biological Process: nucleosome } \\
\text { assembly (GO:0006334), Biological }\end{array} \\
\hline \text { Process: chromosome organization and } \\
\text { biogenesis (sensu Eukaryota) } \\
\text { (GO:0007001) }\end{array}
$$\right] \begin{array}{l}Molecular Function: inositol or

phosphatidylinositol phosphatase activity

(GO:0004437)\end{array}\right]\)| (400) |
| :--- |

$5(408)$	$6(415)$	$20(235)$	IPR000591: Pleckstrin/ G- protein, interacting region	Biological Process: intracellular signaling cascade (GO:0007242)
$5(409)$	$5(498)$	$11(411)$	IPR000697: EVH1	
$5(410)$	$5(499)$	$9(506)$	IPR000756: Diacylglycerol kinase accessory region	Molecular Function: diacylglycerol kinase activity (GO:0004143), Biological Process: protein kinase C activation (GO:0007205)
$5(411)$	$6(418)$	$10(450)$	IPR000836: Phosphoribosyltransferase	Biological Process: nucleoside metabolism (GO:0009116)
$5(412)$	$4(597)$	$9(507)$	IPR000857: Unconventional myosin/plant kinesin-like protein/non-motor protein conserved region MyTH4	Cellular Component: cytoskeleton (GO:0005856)
$5(413)$	$7(358)$	0	IPR000896: Arthropod hemocyanin/insect LSP	Molecular Function: oxygen transporter activity (GO:0005344), Biological Process: transport (GO:0006810)
$5(414)$	$4(602)$	$2(1557)$	IPR001117: Multicopper oxidase, type 1	Molecular Function: copper ion binding (GO:0005507)
$5(415)$	$6(424)$	$8(565)$	IPR001132: Dwarfin protein	Cellular Component: intracellular (GO:0005622), Biological Process: regulation of transcription, DNA- dependent (GO:0006355)
$5(416)$	$4(603)$	$14(340)$	IPR001180: Citron-like	Molecular Function: small GTPase regulator activity (GO:0005083)
$5(417)$	$4(611)$	$9(514)$	IPR001298: Filamin/ABP280 repeat	IPR001370: Proteinase inhibitor I32, inhibitor of apoptosis
$5(418)$	$4(617)$	Cellular Component: intracellular (GO:0005622), Biological Process: anti- apoptosis (GO:0006916)		
$5(419)$	$5(509)$	$9(518)$	IPR001388: Synaptobrevin	Cellular Component: integral to membrane (GO:0016021), Biological Process: vesicle-mediated transport

				(GO:0016192)
5 (420)	4 (618)	10 (461)	IPR001392: Clathrin adaptor complex, medium chain	Biological Process: intracellular protein transport (GO:0006886), Cellular Component: clathrin vesicle coat (GO:0030125)
5 (421)	6 (428)	13 (367)	IPR001401: Dynamin	Molecular Function: GTPase activity (GO:0003924), Molecular Function: GTP binding (GO:0005525)
5 (422)	1 (1517)	4 (1021)	IPR001525: C-5 cytosinespecific DNA methylase	Molecular Function: DNA binding (GO:0003677), Biological Process: DNA methylation (GO:0006306)
5 (423)	5 (513)	7 (639)	IPR001619: Sec1-like protein	Biological Process: vesicle docking during exocytosis (GO:0006904), Biological Process: vesicle-mediated transport (GO:0016192)
5 (424)	6 (434)	30 (155)	IPR001627: Semaphorin/CD100 antigen	
5 (425)	4 (627)	2 (1590)	IPR001747: Lipid transport protein, N -terminal	Molecular Function: lipid transporter activity (GO:0005319), Biological Process: lipid transport (GO:0006869)
5 (426)	5 (519)	12 (393)	IPR002083: MATH	
5 (427)	2 (1033)	25 (181)	IPR002119: Histone H2A	Cellular Component: nucleosome (GO:0000786), Molecular Function: DNA binding (GO:0003677), Cellular Component: nucleus (GO:0005634), Biological Process: nucleosome assembly (GO:0006334), Biological Process: chromosome organization and biogenesis (sensu Eukaryota) (GO:0007001)

$5(428)$	$6(443)$	$5(838)$	IPR002125: CMP/dCMP deaminase, zinc-binding	Molecular Function: zinc ion binding (GO:0008270), Molecular Function: hydrolase activity (GO:0016787)
$5(429)$	$6(444)$	$7(648)$	IPR002155: Thiolase	
$5(430)$	$\mathbf{2 5 (9 2)}$	$17(288)$	IPR002223: Proteinase inhibitor I2, Kunitz metazoa	Molecular Function: serine-type endopeptidase inhibitor activity (GO:0004867)
$5(431)$	$5(522)$	$6(739)$	IPR002469: Peptidase S9B, dipeptidylpeptidase IV N- terminal	Molecular Function: dipeptidyl- peptidase IV activity (GO:0004274), Biological Process: proteolysis and peptidolysis (GO:0006508), Cellular Component: membrane (GO:0016020)
$5(432)$	$11(251)$	$4(1048)$	IPR002502: N- acetylmuramoyl-L-alanine amidase, family 2	Molecular Function: N-acetylmuramoyl- L-alanine amidase activity (GO:0008745), Biological Process: peptidoglycan catabolism (GO:0009253)
$5(433)$	$5(525)$	$5(844)$	IPR002562: 3'-5' exonuclease	Molecular Function: nucleic acid binding (GO:0003676), Cellular Component: intracellular (GO:0005622), Molecular
$5(434)$	$7(377)$	$9(527)$	Function: 3'-5' exonuclease activity (GO:0008408)	
$5(435)$	$3(792)$	$9(529)$	IPR002610: Rhomboid-like protein	IPR002857: Zinc finger, CXXC-type
$5(436)$	$9(304)$	$9(530)$	IPR002939: Chaperone DnaJ, C-terminal	Molecular Function: DNA binding (GO:0003677), Molecular Function: zinc ion binding (GO:0008270)
Biological Process: protein folding				
(GO:0006457), Molecular Function:				
unfolded protein binding (GO:0051082)				

$5(437)$	$6(451)$	$15(320)$	IPR003118: Sterile alpha motif/pointed	Molecular Function: DNA binding (GO:0003677), Cellular Component: nucleus (GO:0005634)
$5(438)$	$6(452)$	$19(257)$	IPR003124: Actin-binding WH2	
$5(439)$	$5(532)$	$5(857)$	IPR003152: PIK-related kinase, FATC	
$5(440)$	$5(533)$	$8(592)$	IPR003307: eIF4- gamma/eIF5/eIF2-epsilon	Molecular Function: translation initiation factor activity (GO:0003743), Biological Process: regulation of translational initiation (GO:0006446)
$5(441)$	$7(382)$	$5(863)$	IPR003397: Mitochondrial import inner membrane translocase, subunit Tim17/22	Cellular Component: mitochondrial inner membrane (GO:0005743), Molecular Function: protein transporter activity (GO:0008565), Biological Process: protein transport (GO:0015031)
$5(442)$	$5(538)$	$12(398)$	IPR003619: Dwarfin protein, A	Cellular Component: intracellular (GO:0005622), Biological Process: regulation of transcription, DNA- dependent (GO:0006355)
$5(443)$	$4(655)$	$8(596)$	IPR003892: Ubiquitin system component Cue	IPR004182: GRAM
$5(444)$	$5(545)$	$17(290)$	IPR004210: BESS motif	IPR
$5(445)$	$20(126)$	$7(389)$	$12(400)$	IPR004299: Membrane bound O-acyl transferase, MBOAT
$5(446)$	GO:0003677)			

$\left.\begin{array}{|c|c|c|l|l|}\hline 5(447) & 5(548) & 5(885) & \begin{array}{l}\text { IPR004364: tRNA synthetase, } \\ \text { class II (D, K and N) }\end{array} & \begin{array}{l}\text { Molecular Function: tRNA ligase } \\ \text { activity (GO:0004812), Molecular } \\ \text { Function: ATP binding (GO:0005524), } \\ \text { Cellular Component: cytoplasm } \\ \text { (GO:0005737), Biological Process: } \\ \text { tRNA aminoacylation for protein } \\ \text { translation (GO:0006418) }\end{array} \\ \hline 5(448) & 4(669) & 13(379) & \text { IPR005112: dDENN } & \\ \hline 5(449) & 4(670) & 11(432) & \text { IPR005113: uDENN } & \\ \hline 5(450) & () & \mathbf{1 (2 3 8 4)} & \begin{array}{l}\text { IPR005119: LysR, substrate- } \\ \text { binding }\end{array} & \\ \hline 5(451) & 10(281) & 0 & \begin{array}{l}\text { IPR005203: Hemocyanin, C- } \\ \text { terminal }\end{array} & \\ \hline 5(452) & 8(343) & 0 & \begin{array}{l}\text { IPR005204: Hemocyanin, N- } \\ \text { terminal }\end{array} & \\ \hline 5(453) & 2(1181) & 5(895) & \begin{array}{l}\text { IPR005476: Transketolase, C- } \\ \text { terminal }\end{array} & \\ \hline 5(454) & 3(847) & 3(1345) & \begin{array}{l}\text { IPR005835: Nucleotidyl } \\ \text { transferase }\end{array} & \begin{array}{l}\text { Biological Process: biosynthesis } \\ \text { (GO:0009058), Molecular Function: } \\ \text { nucleotidyltransferase activity } \\ \text { (GO:0016779) }\end{array} \\ \hline 5(455) & 6(466) & 11(433) & \begin{array}{l}\text { IPR006011: Syntaxin, N- } \\ \text { terminal }\end{array} & \begin{array}{l}\text { Cellular Component: membrane } \\ \text { (GO:0016020) }\end{array} \\ \hline 5(456) & 15(193) & 31(150) & \begin{array}{l}\text { IPR006026: Peptidase, } \\ \text { metallopeptidases }\end{array} & \begin{array}{l}\text { Biological Process: proteolysis and } \\ \text { peptidolysis (GO:0006508), Molecular } \\ \text { Function: metallopeptidase activity } \\ \text { (GO:0008237) }\end{array} \\ \hline 5(457) & 6(469) & 4(1104) & & \begin{array}{l}\text { IPR006139: D-isomer specific } \\ \text { 2-hydroxyacid dehydrogenase, } \\ \text { catalytic region }\end{array} \\ \hline \text { Biological Process: L-serine biosynthesis } \\ \text { (GO:0006564), Molecular Function: } \\ \text { oxidoreductase activity, acting on the } \\ \text { CH-OH group of donors, NAD or NADP } \\ \text { as acceptor (GO:0016616) }\end{array}\right\}$

5 (458)	6 (470)	4 (1105)	IPR006140: D-isomer specific 2-hydroxyacid dehydrogenase, NAD-binding	Biological Process: L-serine biosynthesis (GO:0006564), Molecular Function: oxidoreductase activity, acting on the CH-OH group of donors, NAD or NADP as acceptor (GO:0016616)
5 (459)	5 (554)	13 (381)	IPR006153: Sodium/hydrogen exchanger	Biological Process: regulation of pH (GO:0006885), Molecular Function: solute:hydrogen antiporter activity (GO:0015299), Cellular Component: integral to membrane (GO:0016021)
5 (460)	5 (557)	5 (912)	IPR006571: TLDc	
5 (461)	13 (220)	5 (917)	IPR006589: Alpha amylase, catalytic subdomain	Molecular Function: alpha-amylase activity (GO:0004556), Biological Process: carbohydrate metabolism (GO:0005975)
5 (462)	7 (394)	7 (682)	IPR006596: Nucleotide binding protein, PINc	
5 (463)	5 (559)	6 (780)	IPR006630: RNA-binding protein Lupus La	
5 (464)	4 (691)	10 (488)	IPR006680: Amidohydrolase	Molecular Function: hydrolase activity (GO:0016787)
5 (465)	5 (562)	6 (786)	IPR007109: Brix	
5 (466)	6 (474)	5 (922)	IPR007259: Spc97/Spc98	Biological Process: microtubule cytoskeleton organization and biogenesis (GO:0000226), Cellular Component: spindle pole (GO:0000922), Cellular Component: microtubule organizing center (GO:0005815)
5 (467)	15 (195)	9 (546)	IPR007484: Peptidase M28	Biological Process: proteolysis and peptidolysis (GO:0006508), Molecular Function: peptidase activity (GO:0008233)

5 (468)	6 (476)	14 (359)	IPR008211: Laminin, Nterminal	Cellular Component: extracellular matrix (sensu Metazoa) (GO:0005578)
5 (469)	3 (902)	10 (490)	IPR008273: Cellular retinaldehyde-binding/triple function, N -terminal	
5 (470)	5 (569)	1 (2770)	IPR008774: A2 Phospholipase	Molecular Function: phospholipase A2 activity (GO:0004623), Molecular Function: calcium ion binding (GO:0005509), Cellular Component: extracellular region (GO:0005576), Biological Process: phospholipid metabolism (GO:0006644)
5 (471)	2 (1331)	9 (549)	IPR009886: HCaRG	
5 (472)	6 (479)	12 (403)	IPR010625: CHCH	
5 (473)	10 (290)	3 (1479)	IPR011611: PfkB	
5 (474)	5 (575)	4 (1164)	IPR011706: Multicopper oxidase, type 2	Molecular Function: copper ion binding (GO:0005507), Molecular Function: oxidoreductase activity (GO:0016491)
5 (475)	4 (718)	()	IPR011707: Multicopper oxidase, type 3	Molecular Function: copper ion binding (GO:0005507), Molecular Function: oxidoreductase activity (GO:0016491)
5 (476)	6 (482)	6 (805)	IPR011765: Peptidase M16, N-terminal	
4 (477)	2 (930)	18 (260)	IPR0000001: Kringle	
4 (478)	5 (484)	15 (304)	IPR000038: Cell division/GTP binding protein	Molecular Function: GTP binding (GO:0005525), Biological Process: cell cycle (GO:0007049)

4 (479)	4 (577)	3 (1172)	IPR000040: Acute myeloid leukemia 1 protein (AML 1)/Runt	Molecular Function: DNA binding (GO:0003677), Molecular Function: ATP binding (GO:0005524), Cellular Component: nucleus (GO:0005634), Biological Process: regulation of transcription, DNA-dependent (GO:0006355)
4 (480)	6 (408)	4 (974)	IPR000120: Amidase	Molecular Function: amidase activity (GO:0004040)
4 (481)	9 (291)	20 (231)	IPR000157: TIR	Molecular Function: transmembrane receptor activity (GO:0004888), Cellular Component: membrane (GO:0016020)
4 (482)	7 (353)	6 (701)	IPR000194: H+-transporting two-sector ATPase, alpha/beta subunit, central region	Molecular Function: ATP binding (GO:0005524), Biological Process: ATP synthesis coupled proton transport (GO:0015986), Cellular Component: proton-transporting two-sector ATPase complex (GO:0016469), Molecular Function: hydrogen-transporting ATP synthase activity, rotational mechanism (GO:0046933), Molecular Function: hydrogen-transporting ATPase activity, rotational mechanism (GO:0046961)
4 (483)	5 (487)	3 (1177)	IPR000246: Peptidase T2, asparaginase 2	Molecular Function: asparaginase activity (GO:0004067), Biological Process: glycoprotein catabolism (GO:0006516)
4 (484)	4 (581)	9 (499)	IPR000261: EPS15 homology (EH)	
4 (485)	5 (488)	11 (408)	IPR000286: Histone deacetylase superfamily	

\(\left.$$
\begin{array}{|c|c|c|l|l|}\hline 4(486) & 4(582) & 3(1182) & \begin{array}{l}\text { IPR000323: Copper type II, } \\
\text { ascorbate-dependent } \\
\text { monooxygenase }\end{array} & \begin{array}{l}\text { Molecular Function: monooxygenase } \\
\text { activity (GO:0004497), Molecular } \\
\text { Function: copper ion binding } \\
\text { (GO:0005507) }\end{array} \\
\hline 4(487) & 5(489) & 16(294) & \text { IPR000327: POU } & \begin{array}{l}\text { Molecular Function: transcription factor } \\
\text { activity (GO:0003700), Cellular } \\
\text { Component: nucleus (GO:0005634), } \\
\text { Biological Process: regulation of } \\
\text { transcription, DNA-dependent } \\
\text { (GO:0006355) }\end{array} \\
\hline 4(488) & 3(739) & 4(978) & \begin{array}{l}\text { IPR000352: Class I peptide } \\
\text { chain release factor }\end{array} & \begin{array}{l}\text { Molecular Function: translation release } \\
\text { factor activity (GO:0003747), Biological } \\
\text { Process: translational termination } \\
\text { (GO:0006415) }\end{array} \\
\hline 4(489) & 6(412) & 6(704) & \begin{array}{l}\text { IPR000402: Na+/K+ ATPase, } \\
\text { beta subunit }\end{array} & \begin{array}{l}\text { Molecular Function: sodium:potassium- } \\
\text { exchanging ATPase activity } \\
\text { (GO:0005391), Biological Process: } \\
\text { potassium ion transport (GO:0006813), }\end{array}
$$

\hline Biological Process: sodium ion transport

(GO:0006814), Cellular Component:\end{array}\right]\)| membrane (GO:0016020) |
| :--- |

4 (491)	1 (1423)	22 (207)	IPR000558: Histone H2B	Cellular Component: nucleosome (GO:0000786), Molecular Function: DNA binding (GO:0003677), Cellular Component: nucleus (GO:0005634), Biological Process: nucleosome assembly (GO:0006334), Biological Process: chromosome organization and biogenesis (sensu Eukaryota) (GO:0007001)
4 (492)	4 (588)	4 (981)	IPR000583: Glutamine amidotransferase, class-II	Biological Process: metabolism (GO:0008152)
4 (493)	4 (590)	12 (386)	IPR000648: Oxysterolbinding protein	Biological Process: steroid metabolism (GO:0008202)
4 (494)	4 (591)	4 (989)	IPR000649: Initiation factor 2B related	Biological Process: cellular biosynthesis (GO:0044249)
4 (495)	7 (357)	6 (709)	IPR000793: H+-transporting two-sector ATPase, alpha/beta subunit, C-terminal	Biological Process: ATP biosynthesis (GO:0006754), Biological Process: ATP synthesis coupled proton transport (GO:0015986), Cellular Component: proton-transporting two-sector ATPase complex (GO:0016469), Molecular Function: hydrogen-transporting ATP synthase activity, rotational mechanism (GO:0046933), Molecular Function: hydrogen-transporting ATPase activity, rotational mechanism (GO:0046961)

				Molecular Function: DNA binding (GO:0003677), Molecular Function: RNA polymerase II transcription factor activity (GO:0003702), Cellular Component: nucleus (GO:0005634), Cellular Component: transcription factor TFIID complex (GO:0005669), Biological Process: regulation of transcription, DNA-dependent (GO:0006355), Biological Process: transcription initiation from RNA polymerase II promoter (GO:0006367)
$4(496)$	$5(500)$	$3(1195)$	IPR000814: TATA-box binding	
$4(497)$	$2(969)$	$1(2077)$	IPR000897: GTP-binding signal recognition particle SRP54, G-domain	Molecular Function: RNA binding (GO:0003723), Molecular Function: GTP binding (GO:0005525), Cellular Component: signal recognition particle (sensu Eukaryota) (GO:0005786),
$4(498)$	$2(971)$	$9(508)$	IPR000906: ZU5	Biological Process: SRP-dependent cotranslational protein-membrane targeting (GO:0006614)
$4(499)$	$5(502)$	$13(365)$	IPR000949: ELM2	
$4(500)$	$7(360)$	0	IPR000990: Innexin	Cellular Component: gap junction (GO:0005921)

Table S14. Homeobox Genes.

ID Name	Chromosome	Exon Number	Domain Name	Top Blast hit (not to be used as guide to orthology)
GB13163-RA	Group1.38	2	HOX	Homeobox protein GBX-2
GB13163-RB	Group1.38	2	HOX	Gastrulation brain homeobox 1: GBX-1
GB13163-RC	Group1.38	2	HOX	Homeobox protein GBX-2
GB13163-RD	Group1.38	3	HOX	Gastrulation brain homeobox 1: GBX-1
GB11694-RA	Group1.43	3	Dicty HOX	Homeobox protein invected inv
GB15566-RA	Group1.43	4	Segmentation polarity homeobox protein engrailed; 72\% identity to homeobox protein En-1	
GB15566-RB	Group1.43	4	HOX	Segmentation polarity homeobox protein engrailed; 72\% identity to homeobox protein En-1; isoform2
GB15586-RB	Group1.37	3	HOX	HOX
GB10613-RA	Group1.37	2	3	Transcription factor LBX1
GB13498-RA	Group1.37	Group1.37	3	Homeobox protein Nkx-3.2
		Group1.37	4	Homeobox protein Nkx-2.5 isoform1
Homeobox protein				
Nkx-2.5 isoform2				

segmentation\end{array}\right|\)| HOX |
| :--- |

$\left.\begin{array}{|l|l|l|l|l|}\hline & & & & \begin{array}{l}\text { homeobox (Protein } \\ \text { Drop) }\end{array} \\ \hline \text { GB13830-RB } & \text { Group1.37 } & 2 & \text { HOX } & \begin{array}{l}\text { Muscle } \\ \text { segmentation } \\ \text { homeobox (Protein } \\ \text { Drop) }\end{array} \\ \hline \text { GB18552-RA } & \text { Group1.37 } & & 3 & \text { SelP HOX }\end{array} \begin{array}{l}\text { Muscle } \\ \text { segmentation } \\ \text { homeobox (Protein } \\ \text { Drop) }\end{array}\right\}$

GB15837-RA	Group3.27	8	PBX HOX	Homeobox protein extradenticle Exd
GB10569-RA	Group3.23	3	HOX	"Dual bar protein, Homeobox protein B-H2"
GB16262-RA	Group4.18	7	POU HOX	"POU domain, class 2, transcription factor 1 isoform A "
GB15295-RA	Group4.11	Group4.19	4	HOX

GB30239-RB	Group8.5	9	LIM-bind	LIM homeobox protein cofactor CLIM-1a
GB13745-RA	Group9.4	4	HOX	Homeobox protein HLX1
GB15027-RA	Group9.11	2	HOX	Part of NK2 transcription factor related; NK2 transcription factorlike protein B; homeobox protein
GB16085-RA	Group10.10	1	POU HOX	"Pou DOMAIN PROTEIN, drifter protein; CF1"
GB13229-RA	Group10.12	14	PDZ 4LIM	Part of LIM domain binding 3
GB10772-RA	Group10.15	3	PAX 2Selp	Paired box protein Pax-1
GB18585-RA	Group11.11	4	2LIM SeIP HOX	LIM2 related protein
GB18585-RB	Group11.11	5	2LIM SelP HOX	LIM2 related protein
GB30111-RA	Group11.11	5	LIM HOX	LIM homeobox 9
GB13918-RB	Group11.9	3	CUT HOX	Hepatocyte nuclear factor 6 (HNF-6) (One cut domain family member 1)
GB13918-RA	Group11.9	7	CUT HOX	Hepatocyte nuclear factor 6 (HNF-6) (One cut domain family member 1)
GB16706-RA	Group11.17	6	$\begin{aligned} & \text { 4HOX Prox1 } \\ & \text { TolA } \end{aligned}$	zinc finger homeodomain 4 isoform 3
GB18111-RA	Group11.23	4	HOX Atro	Caupolican homeoprotein
GB14516-RA	Group13.7	5	HOX Selp	Homeotic distal-less protein (Protein

				brista); DLL; DLX-2
GB30148-RA	Group13.14	7	HOX Herpes	Transcription factor DRG11 homeodomain protein
GB15643-RA	Group13.10	14	POU HOX	Retina-derived POU-domain factor1 isoform 1
GB15643-RB	Group13.10	13	POU HOX	Retina-derived POU-domain factor1 isoform 2
GB15643-RC	Group13.10	12	POU HOX	Retina-derived POU-domain factor1 isoform 3
GB15469-RA	Group14.4	5	PAX HOX Atro	"Paired-box transcription factor, PRD-like homeobox"
GB15469-RB	Group14.4	5	PAX HOX Atro	Segmentation protein paired ;PRD class homeobox protein; DMBX1 2842\%
GB15632-RA	Group14.12	6	PAX HOX	segmentation polarity homeobox protein engrailed; 72% identity to homeobox protein En-1
GB14483-RA	Group14.12	6	PAX HOX	Paired box transcription factor BSH4
GB16661-RA	Group14.3	3	HOX	Aristaless 3; PRDlike homeobox protein
GB16259-RB	Group15.12	1	HOX TFIIA	"Homeobox protein slou (S59/2), 45\% similar to NK-1 homeobox protein; isoform 1"

GB16259-RA	Group15.12	2	HOX TFIIA	"Homeobox protein slou (S59/2), 45\% similar to NK-1 homeobox protein; isoform 2"
GB11254-RA	Group15.15	3	SelP HOX	Empty spiracles homeotic protein Emx
GB30063-RA	Group16.1	14	Prox1	Homeobox prospero-like protein (PROX1) protein
GB15651-RA	Group16.2	9	LIM LIM HOX	LIM HOMEOBOX PROTEIN isoform 1
GB15651-RB	Group16.2	8	LIM LIM HOX	LIM HOMEOBOX PROTEIN isoform 2
GB15651-RC	Group16.2	4	LIM LIM HOX	LIM HOMEOBOX PROTEIN isoform 3
GB18833-RA	Group16.2	3	POU HOX	"POU DOMAIN PROTEIN, CLASS 4-RELATED "
GB13409-RB	Group16.6	3	HOX Atro Andro	"HOMEOBOX PROTEIN: dfd, isoform 1"
GB13409-RA	Group16.6	3	HOX	"HOMEOBOX PROTEIN: dfd, isoform 2"
GB18792-RA	Group16.6	3	HOX	HOMEOBOX PROTEIN: zenrelated
GB11988-RA	Group16.6	4	HOX ROM1	$\begin{aligned} & \text { HOMEOTIC } \\ & \text { PROTEIN: pb } \end{aligned}$
GB14027-RA	Group16.6	2	HOX ZhuA	HOMEOBOX PROTEIN:Iab
GB18940-RA	Group16.7	2	HOX	Homeotic scrrelated protein
GB13491-RA	Group16.7	2	HOX Trbl	HOMEOBOX PROTEIN: ftz

GB10341-RA	Group16.8	2	HOX Herpes	HOMEOBOXRELATED PROTEIN: AbdB
GB19738-RA	Group16.8	3	HOX Herpes	HOMEOBOX PROTEIN: AbdA
GB30077-RA	Group16.8	2	HOX	Ultrabithorax: Ubx
GB18813-RA	Group16.8	2	HOX	Homeotic antennapedia protein Antp
GB18918-RA	GroupUn. 1196	9	HOX	Zinc-finger homeodomain protein 1
GB10623-RA	GroupUn. 41	3	HOX	"Even skipped, HOX related eve"
GB12465-RA	GroupUn. 531	6	LIM LIM HOX	LIM homeobox protein
GB14318-RA	GroupUn. 109	4	LIM LIM HOX	Arrowhead ;45\% identity to Lhx6
GB11571-RA	GroupUn. 118	4	HOX	Homeodomain protein dbx
GB30353-RA	GroupUn. 49	3	HOX	"TCL: T-cell leukemia, homeobox 1 "
GB11491-RA	GroupUn. 1	2	HOX	Gnot1 homeodomain protein
GB30330-RA	GroupUn. 3697	2	HOX	Transcription factor DRG11
GB14165-RA	GroupUn. 30	4	HOX	Reversed polarity ; goosecoid
GB20009-RA	GroupUn. 1701	4	HOX	Homeobox protein rough
GB11098-RA	GroupUn. 209	3	HOX	Homeo box HB9; Homeobox protein rough;
GB18266-RA	GroupUn108	4	HOX	Mesenchyme homeo box 2

				(growth arrest- specific homeo box)
GB30291-RA	GroupUn.1841	2	HOX	Homeobox protein aristaless; HOX domain
GB11536-RA	GroupUn.548	6	HOX	Aristaless-like homeobox protein
GB30426-RA	GroupUn.4568	2	HOX	Homeobox protein B-H1 (Homeobox BarH1 protein)
GB10709-RA	GroupUn.1038	6	5 LIM	LIM and senescent cell antigen-like domains 1

Table S15. Candidate new bee venom components.

Homologues of known insect allergens

Allergen	Genbank	Species	Function
	Acc N°		
Aed a 1	$\mathrm{GI}: 556272$	Aedes aegypti	apyrase
Blag 2	GI:1703445	Blatella germanica	aspartic protease
Blag 5	GI:2326190	Blatella germanica	glutathione transferase
Per a 1	GI:2580504	Periplaneta americana	Cr-PII
Per a 3	GI:1580797	Periplaneta americana	Cr-PI
Per a 7	$\mathrm{GI}: 4468638$	Periplaneta americana	tropomyosin
Chi k 10	GI:42559556	Chironomus kiiensis	tropomyosin
Lep s 1	GI:20387026	Lepisma saccharina	tropomyosin
Dol m 1	GI:548449	Dolichovespula maculata	phospholipase A1
Dol m 5	$\mathrm{GI}: 137395$	Dolichovespula maculata	antigen 5

Glean3	E-
Acc N	value

Dol a 5	GI:465052	Dolichovespula arenaria	antigen 5	GLEAN3_01188	$2 \mathrm{e}-16$
Pol a 1	GI:14423833	Polistes annularies	phospholipase A1	GLEAN3_03364	$3 \mathrm{e}-33$
Pol a 5	GI:465053	Polistes annularies	antigen 5	GLEAN3_01188	1e-19
Pold 5	GI:6136164	Polistes dominulus		GLEAN3_01188	1e-19
Pole 5	GI:549187	Polistes exclamans		GLEAN3_01188	2e-19
Polf 5	GI:549188	Polistes fuscatus		GLEAN3_01188	1e-20
Polg 5	GI:25091511	Polistes gallicus		GLEAN3_01188	7e-19
Ves f 5	$\mathrm{GI}: 549189$	Vespula flavopilosa	antigen 5	GLEAN3_01188	$9 \mathrm{e}-19$
Ves g 5	GI:74035841	Vespula germanica	antigen 5	GLEAN3_01188	1e-18
Ves m 5	GI:85681830	Vespula maculifrons	antigen 5	GLEAN3_01188	$4 \mathrm{e}-18$
Vesp 5	GI:549192	Vespula pennsylvanica	antigen 5	GLEAN3_01188	1e-18
Ves s 5	GI:549193	Vespula squamosa	antigen 5	GLEAN3_01188	1e-17
Ves vi 5	$\mathrm{GI}: 549194$	Vespula vidua	antigen 5	GLEAN3_01188	$3 \mathrm{e}-17$
Ves v 1	GI:1352699	Vespula vulgaris	phospholipase A1	GLEAN3_03364	7e-34
Ves v 5	GI:11514279	Vespula vulgaris	antigen 5	GLEAN3_01188	5e-19

Sol i 3	GI:14424466	Solenopsis invicta	GLEAN3_01188	7e-21
Tria p 1	GI:15426413	Triatoma protracta	procalin	GLEAN3_06096

Homologues of known snake and scorpion venom components

Protein family	Genbank	Species	Function
Acc N°			
desintegrins	GI:461932	Calloselasma rhodostoma	hemorrhagic protein-rhodostomin precursor
desintegrins	GI:67462322	Cryptelytrops albolabris	disintegrin albolabrin
desintegrins	GI:50400453	Agkistrodon piscivorus piscivorus	zinc metalloproteinase

Glean3	E-
Acc N ${ }^{\circ}$	value
GLEAN3_06023	$2 e-50$
GLEAN3_05408	$6 e-37$
GLEAN3_04160	$4 e-24$
GLEAN3_05408	$5 e-14$
GLEAN3_06023	$3 e-12$
GLEAN3_04160	$6 e-07$
GLEAN3_06023	$3 e-59$
GLEAN3_05408	$1 e-47$

neurotoxin	GI:33187130	Vipera aspis	ammodytin 11 isoform 1	GLEAN3_00224	$4 \mathrm{e}-04$
neurotoxin	$\mathrm{GI}: 33187116$	Vipera aspis	vaspin B	GLEAN3_00224	1e-09
neurotoxin	GI:68705	Bungarus multicinctus	beta-1 bungarotoxin chain B	GLEAN3_01308	9e-08
anticoagulant peptide	$\mathrm{GI}: 39932463$	Mesobuthus martensii	venom peptide BmKAPi precursor	GLEAN3_08736	5e-06
anticoagulant peptide	$\mathrm{GI}: 27903821$	Mesobuthus martensii	venom peptide BmKAPi precursor	GLEAN3_08736	5e-06

References

1. Beye, M. \& Raeder, U. Rapid DNA preparation from bees and \%GC fractionation. .-. , 372-4 (1993).
2. Levan, A., Fredga, K. \& Sandberg, A. Nomenclature for centromeric position on chromosomes. , 201-220 (1964).

Table S16. Mean population differentiation ($\mathrm{F}_{\text {ST }}$) for evolutionary lineages of Apis mellifera, based on 1136 SNPs.

	Mean $\mathrm{F}_{\text {ST }}$
Among all subspecies (N-10)	0.501
Major major lineages (M, A, C and O)	0.471
M vs. A	0.242
M vs. C	0.565
M vs. O	0.458
A vs. C	0.354
A vs. O	0.256
C vs. O	0.332

$F_{\text {ST }}$ values were calculated using Weir and Cockerham's unbiased estimator (Weir, B. S. \& Cockerham, C. C. Estimating f-statistics for the analysis of population structure. Evolution 38, 1358-1370 (1984). Geographical subspecies (each represented by 9-21 individuals) are described in Supplementary Methods; these subspecies are divided into 4 major lineages (M, A, C and O) as represented in Figure 10.

Table S17 Access to the Genome Assemblies.

Assembly	Date	BCM FTP Subdirectory	Browser and Identifier
4.0	March 10, 2006	Amel20060310-freeze	BeeBase 4.0
		NCBI AADG05000000	

